Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Missions to Mars

GSI Will Investigate Radiation Risks for Astronauts

The European Space Agency (ESA) has chosen the GSI accelerator facility to assess radiation risks that astronauts will be exposed to on a Mars mission. GSI was selected because its accelerator is the only one in Europe able to create ion beams similar to those found in space. To determine possible health risks of manned space flights, scientists from all over Europe have been asked to investigate the effects of ion beams in human cells and organs. The first experiments will be launched this year and subsequently continued at GSI’s planned FAIR accelerator system.

Astronauts flying to the moon or Mars would be constantly bombarded by cosmic rays, whose health risks are not known in detail. Unlike the situation in space, the earth’s surface is largely shielded from cosmic rays by the planet’s atmosphere and magnetic field. In general, radiation can damage human cells and their genetic material. In addition to causing cancer, it can directly kill cells, which can later result in extensive damage in tissues including the brain.

The aim of the planned research activities is to quantitatively examine the biological effects of ion beams on the human genome and to determine how these effects would manifest themselves over time. For these tests, scientists will irradiate molecules and cell and tissue samples. The results of the research could then be used to develop optimized radiation shields for space exploration, which are a prerequisite for conducting safe missions to Mars.

The ion beams found in space have a wide variety of sources and can be derived from all types of elements, ranging from the lightest, hydrogen, to the heaviest, uranium. GSI’s accelerator facility can generate all types of ion beams, making it particularly well-suited for the planned research project. The research possibilities will be greatly expanded in the future by the FAIR accelerator facility, which will be able to produce even more energetic and intense ion beams.

Scientists are invited by ESA to submit proposals for experiments at GSI. The internationally leading scientists on the Biophysics & Radio-Biology Program Advisory Committee will begin reviewing initial applications in May, and the first experiments could be conducted as early as the end of this year.

Cell nuclei irradiated with ion beams at GSI under the microscope. The points of injection of single ions have been colored with a special method and are visible as bright dots. (Source: GSI)

Gesellschaft für Schwerionenforschung
Planckstr. 1
64291 Darmstadt
Kontakt: Dr. Ingo Peter
Tel: 06159-71-2598
Fax: 06159-71-2991

Dr. Ingo Peter | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>