Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser triggers electrical activity in thunderstorm for the first time

15.04.2008
Device on mountaintop takes first step toward manmade lightning

A team of European scientists has deliberately triggered electrical activity in thunderclouds for the first time, according to a new paper in the latest issue of Optics Express, the Optical Society’s (OSA) open-access journal. They did this by aiming high-power pulses of laser light into a thunderstorm.

At the top of South Baldy Peak in New Mexico during two passing thunderstorms, the researchers used laser pulses to create plasma filaments that could conduct electricity akin to Benjamin Franklin's silk kite string. No air-to-ground lightning was triggered because the filaments were too short-lived, but the laser pulses generated discharges in the thunderclouds themselves.

"This was an important first step toward triggering lightning strikes with laser beams," says Jérôme Kasparian of the University of Lyon in France. "It was the first time we generated lighting precursors in a thundercloud." The next step of generating full-blown lightning strikes may come, he adds, after the team reprograms their lasers to use more sophisticated pulse sequences that will make longer-lived filaments to further conduct the lightning during storms.

Triggering lightning strikes is an important tool for basic and applied research because it enables researchers to study the mechanisms underlying lightning strikes. Moreover, triggered lightning strikes will allow engineers to evaluate and test the lightning-sensitivity of airplanes and critical infrastructure such as power lines.

Pulsed lasers represent a potentially very powerful technology for triggering lightning because they can form a large number of plasma filaments – ionized channels of molecules in the air that act like conducting wires extending into the thundercloud. This is such a simple concept that the idea of using lasers to trigger lightning strikes was first suggested more than 30 years ago. But scientists have not been able to accomplish this to date because previous lasers have not been powerful enough to generate long plasma channels. The current generation of more powerful lasers, like the one developed by Kasparian’s team, may change that.

Kasparian and his colleagues involved in the Teramobile project, an international program initiated by National Center for Scientific Research (CNRS) in France and the German Research Foundation (DFG), built a powerful mobile laser capable of generating long plasma channels by firing ultrashort laser pulses. They chose to test their laser at the Langmuir Laboratory in New Mexico, which is equipped to measure atmospheric electrical discharges. Sitting at the top of 10,500-foot South Baldy Peak, this laboratory is in an ideal location because its altitude places it close to the high thunderclouds.

During the tests, the research team quantified the electrical activity in the clouds after discharging laser pulses. Statistical analysis showed that their laser pulses indeed enhanced the electrical activity in the thundercloud where it was aimed—in effect they generated small local discharges located at the position of the plasma channels.

The limitation of the experiment, though, was that they could not generate plasma channels that lived long enough to conduct lightning all the way to the ground. The plasma channels dissipated before the lightning could travel more than a few meters along them. The team is currently looking to increase the power of the laser pulses by a factor of 10 and use bursts of pulses to generate the plasmas much more efficiently.

Lightning strikes have been the subject of scientific investigation dating back to the time of Benjamin Franklin, but despite this, remain not fully understood. Although scientists have been able to trigger lightning strikes since the 1970s by shooting small rockets into thunderclouds that spool long wires connected to the ground, typically only 50 percent of rocket launches actually trigger a lightning strike. The use of laser technology would make the process quicker, more efficient and cost-effective and would be expected to open a number of new applications.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.opticsexpress.org/abstract.cfm?id=157189

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>