Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser triggers electrical activity in thunderstorm for the first time

15.04.2008
Device on mountaintop takes first step toward manmade lightning

A team of European scientists has deliberately triggered electrical activity in thunderclouds for the first time, according to a new paper in the latest issue of Optics Express, the Optical Society’s (OSA) open-access journal. They did this by aiming high-power pulses of laser light into a thunderstorm.

At the top of South Baldy Peak in New Mexico during two passing thunderstorms, the researchers used laser pulses to create plasma filaments that could conduct electricity akin to Benjamin Franklin's silk kite string. No air-to-ground lightning was triggered because the filaments were too short-lived, but the laser pulses generated discharges in the thunderclouds themselves.

"This was an important first step toward triggering lightning strikes with laser beams," says Jérôme Kasparian of the University of Lyon in France. "It was the first time we generated lighting precursors in a thundercloud." The next step of generating full-blown lightning strikes may come, he adds, after the team reprograms their lasers to use more sophisticated pulse sequences that will make longer-lived filaments to further conduct the lightning during storms.

Triggering lightning strikes is an important tool for basic and applied research because it enables researchers to study the mechanisms underlying lightning strikes. Moreover, triggered lightning strikes will allow engineers to evaluate and test the lightning-sensitivity of airplanes and critical infrastructure such as power lines.

Pulsed lasers represent a potentially very powerful technology for triggering lightning because they can form a large number of plasma filaments – ionized channels of molecules in the air that act like conducting wires extending into the thundercloud. This is such a simple concept that the idea of using lasers to trigger lightning strikes was first suggested more than 30 years ago. But scientists have not been able to accomplish this to date because previous lasers have not been powerful enough to generate long plasma channels. The current generation of more powerful lasers, like the one developed by Kasparian’s team, may change that.

Kasparian and his colleagues involved in the Teramobile project, an international program initiated by National Center for Scientific Research (CNRS) in France and the German Research Foundation (DFG), built a powerful mobile laser capable of generating long plasma channels by firing ultrashort laser pulses. They chose to test their laser at the Langmuir Laboratory in New Mexico, which is equipped to measure atmospheric electrical discharges. Sitting at the top of 10,500-foot South Baldy Peak, this laboratory is in an ideal location because its altitude places it close to the high thunderclouds.

During the tests, the research team quantified the electrical activity in the clouds after discharging laser pulses. Statistical analysis showed that their laser pulses indeed enhanced the electrical activity in the thundercloud where it was aimed—in effect they generated small local discharges located at the position of the plasma channels.

The limitation of the experiment, though, was that they could not generate plasma channels that lived long enough to conduct lightning all the way to the ground. The plasma channels dissipated before the lightning could travel more than a few meters along them. The team is currently looking to increase the power of the laser pulses by a factor of 10 and use bursts of pulses to generate the plasmas much more efficiently.

Lightning strikes have been the subject of scientific investigation dating back to the time of Benjamin Franklin, but despite this, remain not fully understood. Although scientists have been able to trigger lightning strikes since the 1970s by shooting small rockets into thunderclouds that spool long wires connected to the ground, typically only 50 percent of rocket launches actually trigger a lightning strike. The use of laser technology would make the process quicker, more efficient and cost-effective and would be expected to open a number of new applications.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.opticsexpress.org/abstract.cfm?id=157189

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>