Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Tiny radio antennas' under skin could act as remote sensors of humans' emotional, physiological state

14.04.2008
Scientists at the department of Applied Physics of the Hebrew University of Jerusalem have discovered a method for remote sensing of the physiological and emotional state of human beings.

The researchers believe the discovery could theoretically help remotely monitor medical patients, evaluate athletic performance, diagnose disease and remotely sense stress levels – which could have significant implications for technology in the biomedical engineering, anti-terror and security technology fields.

The key is in the surprising shape of human sweat ducts. Professors Yuri Feldman and Aharon Agranat together with Dr. Alexander Puzenko, Dr. Andreas Caduff and PhD student Paul Ben-Ishai have discovered that the human skin is structured as an array of minute antennas that operate in the “Sub Terahertz” frequency range.

This discovery is based on investigations of the internal layers of the skin that were undertaken using a new imaging technique called “Optical Coherent Tomography”. Images produced by this technique revealed that the sweat ducts, which are the tubes that lead the sweat from the sweat gland to the surface of the skin, are shaped as tiny coils. Similar helical structures with much larger dimensions have been used widely in as antennas in wireless communication systems. This made the investigators consider the possibility that the sweat ducts could behave like tiny helical antennas as well.

In a series of experiments, the team measured the electromagnetic radiation reflected from the palm skin at the frequency range between 75GHz and 110GHz. It was found that the level of the reflected intensity depends strongly on the level of activity of the perspiration system. In particular, it was found that the reflected signal is very different if measured in a subject that was relaxed, and if measured in a subject following intense physical activity.

In a second set of measurements it was found that during the period of return to the relaxed state, the reflected signal was strongly correlated with changes in the blood pressure and the pulse rate that were measured simultaneously.

The initial results of the research were published last week in the prestigious scientific journal The Physical Review Letters. The publication aroused significant interest among scientists, physicians and science writers.

The researchers emphasize however, that the research is still in its initial stages and as they “sail in unsheltered water” it will take some time before the full significance of the research is understood and its technological potential is fully evaluated.

The invention has been patented and commercialized by Yissum, the technology transfer company of the Hebrew University of Jerusalem.

Rebecca Zeffert | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>