Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New rocky planet found in constellation Leo

09.04.2008
Spanish and UCL (University College London) scientists have discovered a possible terrestrial-type planet orbiting a star in the constellation of Leo. The new planet, which lies at a distance of 30 light years from the Earth, has a mass five times that of our planet but is the smallest found to date. One full day on the new planet would be equivalent to three weeks on Earth.

The team of astronomers from the Spanish Research Council (CSIC) working with Dr Jean-Philippe Beaulieu, a visiting astrophysicist at UCL, made the discovery from model predictions of a new exoplanet (meaning planet outside our solar system) orbiting a star in the constellation of Leo. Simulations show that the exoplanet, dubbed GJ 436c, orbits its host star (GJ 436) in only 5.2 Earth days, and is thought to complete a revolution in 4.2 Earth days, compared to the Earth’s revolution of 24 hours and full orbit of 365 days.

On Earth, a full day (sunset to sunset) coincides quite closely with the rotation period. On the new planet these two periods do not coincide, since the orbital translation period and the rotation period are very similar. For this reason, a full day on the new planet would take four planetary years, or roughly 22 Earth days.

The study, published this week in Astrophysical Journal, predicted the presence of a small exoplanet perturbing an inner planet (already known), producing changes on its orbit. A re-analysis of archival radial velocities also permitted the identification of a signal that perfectly matches the simulations and corresponds to a planet in resonance with the inner one, meaning that for every two orbits of the known planet the new planet completes one.

Ignasi Ribas, lead author of the study from CSIC, says: “After final confirmation, the new exoplanet will be the smallest found to date. It is the first one to be identified from the perturbations exerted on another planet of the system. Because of this, the study opens a new path that should lead to the discovery of even smaller planets in the near future, with the goal of eventually finding worlds more and more similar to the Earth.”

Dr Jean-Philippe Beaulieu, visiting astrophysicist at UCL Physics and Astronomy, says: “This is the fourth super-Earth planet discovered. This planet is the hot twin of the frozen super-Earth (OGLE-2005-BLG-390lb) we discovered by microlensing two years ago. Other previously discovered planets of this class are the two hot super-Earths Gl 581b and Gl 876d detected by their Doppler wobble.“

Dr Giovanna Tinetti, UCL Physics and Astronomy who recently calculated the putative properties of this planet, says: “Calculations indicate that the temperature of the planet could be within 400-700 Kelvin [127-427 Celsius], but it could locally be as low as 350 K [77 C] at the poles, depending on the type of atmosphere.”

Most of the 280 or so planets discovered to date are gas giants similar to Jupiter, although some with masses below 10 times that of the Earth have already been found. Planets with masses of between one and 10 times the Earth are often dubbed super-Earths. In this case, current models predict that the new planet is a rocky type and has a radius some 50 per cent larger than the Earth.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk
http://www.ucl.ac.uk/media/library/exoplanet

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>