Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New rocky planet found in constellation Leo

Spanish and UCL (University College London) scientists have discovered a possible terrestrial-type planet orbiting a star in the constellation of Leo. The new planet, which lies at a distance of 30 light years from the Earth, has a mass five times that of our planet but is the smallest found to date. One full day on the new planet would be equivalent to three weeks on Earth.

The team of astronomers from the Spanish Research Council (CSIC) working with Dr Jean-Philippe Beaulieu, a visiting astrophysicist at UCL, made the discovery from model predictions of a new exoplanet (meaning planet outside our solar system) orbiting a star in the constellation of Leo. Simulations show that the exoplanet, dubbed GJ 436c, orbits its host star (GJ 436) in only 5.2 Earth days, and is thought to complete a revolution in 4.2 Earth days, compared to the Earth’s revolution of 24 hours and full orbit of 365 days.

On Earth, a full day (sunset to sunset) coincides quite closely with the rotation period. On the new planet these two periods do not coincide, since the orbital translation period and the rotation period are very similar. For this reason, a full day on the new planet would take four planetary years, or roughly 22 Earth days.

The study, published this week in Astrophysical Journal, predicted the presence of a small exoplanet perturbing an inner planet (already known), producing changes on its orbit. A re-analysis of archival radial velocities also permitted the identification of a signal that perfectly matches the simulations and corresponds to a planet in resonance with the inner one, meaning that for every two orbits of the known planet the new planet completes one.

Ignasi Ribas, lead author of the study from CSIC, says: “After final confirmation, the new exoplanet will be the smallest found to date. It is the first one to be identified from the perturbations exerted on another planet of the system. Because of this, the study opens a new path that should lead to the discovery of even smaller planets in the near future, with the goal of eventually finding worlds more and more similar to the Earth.”

Dr Jean-Philippe Beaulieu, visiting astrophysicist at UCL Physics and Astronomy, says: “This is the fourth super-Earth planet discovered. This planet is the hot twin of the frozen super-Earth (OGLE-2005-BLG-390lb) we discovered by microlensing two years ago. Other previously discovered planets of this class are the two hot super-Earths Gl 581b and Gl 876d detected by their Doppler wobble.“

Dr Giovanna Tinetti, UCL Physics and Astronomy who recently calculated the putative properties of this planet, says: “Calculations indicate that the temperature of the planet could be within 400-700 Kelvin [127-427 Celsius], but it could locally be as low as 350 K [77 C] at the poles, depending on the type of atmosphere.”

Most of the 280 or so planets discovered to date are gas giants similar to Jupiter, although some with masses below 10 times that of the Earth have already been found. Planets with masses of between one and 10 times the Earth are often dubbed super-Earths. In this case, current models predict that the new planet is a rocky type and has a radius some 50 per cent larger than the Earth.

Jenny Gimpel | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>