Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ready to go: mobile terahertz devices

09.04.2008
Terahertz waves, which until now have barely found their way out of the laboratory, could soon be in use as a versatile tool. Researchers have mobilized the transmitting and receiving devices so that they can be used anywhere with ease.

Everybody knows microwaves – but what are terahertz waves? These higher-frequency waves are a real jack-of-all-trades. They can help to detect explosives or drugs without having to open a suitcase or search through items of clothing.

They can reveal which substances are flowing through plastic tubes. Doctors even hope that these waves will enable them to identify skin cancer without having to perform a biopsy. In the electromagnetic spectrum, terahertz waves are to be found between infrared radiation and microwaves. They can penetrate wood, ceramics, paper, plastic or fabrics and are not harmful to humans. On the other hand, they cannot pass through metal. This makes them a universal tool: They change when passing through gases, solid materials or liquids. Each substance leaves its specific fingerprint, be it explosives or water, heroin or blood.

So far, however, the technology has not made a breakthrough, as it is expensive and time-consuming to build the required transmitters and receivers. Now researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM are making the devices mobile. To generate terahertz waves, the scientists use a femtosecond laser which emits extremely short flashes of infrared light. To illustrate: In one femtosecond, a ray of light moves forward by about the width of a hair.

The pulsed light is directed at a semiconductor, where it excites electrons which then emit terahertz waves. In conventional equipment, the laser light moves freely through the room, which makes measurement inflexible and susceptible to vibrations. The Fraunhofer experts have taken a different approach, guiding the light through a glass fiber of a type similar to that used for transmitting data. “Our fiber-based system is so robust that we can simply plug it into a standard 240-volt socket,” says IPM expert Joachim Jonuscheit. This is not the only benefit: Until now the equipment has required a shock-proof base so that measurements are not falsified by vibrations. With the beam path inside a glass fiber, this is no longer necessary.

The advantages are obvious: The transmitters and receivers, which are about the size of beverage cans, are now attached to a flexible cable and can be positioned wherever desired. Since vibrations are no longer a problem, the device can even be deployed on the factory floor with fork-lift trucks driving around and heavy machinery vibrating. No inspection point is too difficult to access, as the glass fiber cables can bridge distances up to 25 meters.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/04/ResearchNews42008Topic7.jsp

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>