Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venus Express reboots the search for active volcanoes on Venus

08.04.2008
ESA’s Venus Express has measured a highly variable quantity of the volcanic gas sulphur dioxide in the atmosphere of Venus. Scientists must now decide whether this is evidence for active volcanoes on Venus, or linked to a hitherto unknown mechanism affecting the upper atmosphere.

The search for volcanoes is a long-running thread in the exploration of Venus. “Volcanoes are a key part of a climate system,” says Fred Taylor, a Venus Express Interdisciplinary Scientist from Oxford University. That’s because they release gases such as sulphur dioxide into the planet’s atmosphere.

On Earth, sulphur compounds do not stay in the atmosphere for long. Instead, they react with the surface of the planet. The same is thought to be true at Venus, although the reactions are much slower, with a time scale of 20 million years.

Some scientists have argued that the large proportion of sulphur dioxide found by previous space missions at Venus is the ‘smoking gun’ of recent volcanic eruptions. However, others maintain that the eruptions could have happened around 10 million years ago and that the sulphur dioxide remains in the atmosphere because it takes such a long time to react with the surface rocks.

“I am very sceptical about the volcanic hypothesis. However, I must admit that we don't understand yet why there is so much sulphur dioxide at high altitudes”

New observations from Venus Express showing rapid variations of sulphur dioxide in the upper atmosphere have revived this debate.

The SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument analyses the way starlight or sunlight is absorbed by Venus’s atmosphere. The absorbed light tells scientists the identity of the atoms and molecules found in the planet’s atmosphere. This technique works only in the more tenuous upper atmosphere, above the clouds at an altitude of 70–90 km. In the space of a few days, the quantity of sulphur dioxide in the upper atmosphere dropped by two-thirds.

Jean-Loup Bertaux, Service d’Aeronomie du CNRS, Verrières-le-Buisson, is the Principal Investigator for SPICAV. “I am very sceptical about the volcanic hypothesis,” he says. “However, I must admit that we don’t understand yet why there is so much sulphur dioxide at high altitudes, where it should be destroyed rapidly by solar light, and why it is varying so wildly.”

Another instrument on Venus Express, VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), can see below the clouds at infrared wavelengths. It detects the signature of sulphur dioxide by the amount of infrared radiation that the molecule absorbs, the stronger the signature, the more abundant the molecule.

Artist's impression of Venus Express
The variation appears to be smaller in the lower atmosphere. ”With VIRTIS, we monitor sulphur dioxide at an altitude of 35–40 km, and we have seen no change larger than 40% on a global scale over the last two years,” says Giuseppe Piccioni, VIRTIS co-Principal Investigator, IASF-INAF in Rome.

The only way to be absolutely certain that active volcanism is taking place on Venus is to see a volcano in action. This is not easy when you are trying to look through 100 km of thick, cloudy atmosphere. But the Venus Express team are working on two ways of doing this. The first is to look for localised increases in sulphur dioxide that would indicate a large plume of the gas issuing from a volcano. The other way is to look for hot spots on the surface that can be shown to be fresh lava flows.

In both cases, the instrument to use is VIRTIS. “No thermal anomaly has been detected so far,” says Pierre Drossart, Observatoire de Paris, France, and co-Principal Investigator on VIRTIS. Nevertheless, the search continues and the team plan to announce their findings soon.


For more information:

Jean-Loup Bertaux, SPICAV Principal Investigator
Service d'Aeronomie du CNRS
Email : Jean-Loup.Bertaux @ aerov.jussieu.fr
Giuseppe Piccioni, VIRTIS co-Principal Investigator
IASF-INAF, Rome, Italy
Email: Giuseppe.Piccioni @ iasf-roma.inaf.it
Pierre Drossart, VIRTIS co-Principal Investigator
Observatoire de Paris, France
Email: Pierre.Drossart @ obspm.fr
Håkan Svedhem, ESA Venus Express Project Scientist
Email : Hakan.Svedhem @ esa.int

Håkan Svedhem | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Venus_Express/SEMUNV5QGEF_0.html

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>