Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Star Systems First of Their Kind

04.04.2008
Two binary star systems could explode as yellow supergiants

Researchers funded by the National Science Foundation (NSF) announced today in Astrophysical Journal Letters that they have discovered a faraway binary star system that could be the progenitor of a rare type of supernova.

The two yellow stars, which orbit each other and even share a large amount of stellar material, resemble a peanut. The Ohio State University astronomers and their colleagues believe the two stars in the system, 13 million light years away and tucked inside a small galaxy known as Holmberg IX, appear to be nearly identical, each 15 to 20 times the mass of our Sun.

This work was funded through an NSF continuing grant to support a systematic study of the most massive stars in the local universe. The study is expected to yield masses and radii for dozens of massive stars discovered in a variety of environments. The data produced can be used to test models of massive star atmospheres, winds, and how they evolve both as single stars and in binaries.

"To have discovered a pair of massive interacting stars in this configuration is truly exceptional--sort of like rare squared," said NSF Program Manager Michael Briley. "There is a lot these stars can tell us about how they work and how they influence their environment. But the really exciting part is they may also hold the key to finally understanding why some massive yellow stars explode."

Lead author Jose Prieto, an Ohio State graduate student who analyzed the new system as part of his doctoral dissertation, searched the historical record to see whether his group had found the first such binary. In a surprising twist, his search uncovered another similar system less than 230,000 light years away in the Small Magellanic Cloud, a small galaxy that orbits the Milky Way. The second binary star system was discovered in the 1980s but misidentified at the time. Prieto reassessed the data and realized the system was another yellow super-giant eclipsing binary. Prieto and his colleague suspect the yellow binary systems could be the progenitors of rare supernova linked to yellow supergiants.

Most stars end their life in a supernova at the cooler red end of the temperature scale and a few end in the hotter blue end, Pietro said. Astronomers didn't believe stars would end during the short transitional phase in between--until now.

"When two stars orbit each other very closely, they share material, and the evolution of one affects the other," Prieto said. "It's possible two supergiants in such a system would evolve more slowly and spend more time in the yellow phase--long enough that one of them could explode as a yellow supergiant."

Diane Banegas | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=111349&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>