Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover 10 new planets outside solar system

03.04.2008
Revolutionizes understanding of extra-solar planets

An international team of astronomers has found 10 new “extra solar” planets, planets that orbit stars other than our sun.

The team used a system of robotic cameras that yield a great deal of information about these other worlds, some of which are quite exotic. The system is expected to revolutionize scientific understanding of how planets form.

Two participating astronomers from the U.S. are Rachel Street and Tim Lister. Street is a postdoctoral fellow at the University of California, Santa Barbara and the Las Cumbres Observatory Global Telescope Network (LCOGTN) located in Santa Barbara. Lister is a project scientist with LCOGTN.

Team leader, Don Pollaco of Queen’s University, Belfast, Northern Ireland, will announce the findings in his talk at the Royal Astronomical Society’s national astronomy meeting in the U.K. on Wednesday, April 2.

The new international collaboration is called “SuperWASP,” for Wide Area Search for Planets.

This technique of locating the planets gives more information about the formation and evolution of the planets than the gravitational technique. Astronomers look for “transits,” moments when the planets pass in front of the star, like an eclipse, as viewed from the Earth.

In the last six months the SuperWASP team has used two batteries of cameras, one in Spain’s Canary Islands and one in South Africa, to discover the 10 new extra solar planets.

With the gravitational technique, scientists have discovered around 270 extra solar planets since the early 1990s. They measured the gravitational pull on the star that is exerted by the orbiting planet. As the planet moves, it pulls on the star, tugging it back and forth. However, making these discoveries depends on looking at each star over a period of weeks or months, so the pace of discovery is slow.

The SuperWASP technique involves two sets of cameras to watch for events known as transits, where a planet passes directly in front of a star and blocks out some of the star's light. From the Earth the star temporarily appears a little fainter. The

SuperWASP cameras work as robots, surveying a large area of the sky at once. Each night astronomers receive data from millions of stars. They can then check for transits and hence planets. The transit technique also allows scientists to deduce the size and mass of each planet.

A team of collaborators around the world follows up each possible planet found by SuperWASP with more detailed observations to confirm or reject the discovery.

The astronomers working at the Las Cumbres Observatory Global Telescope Network (LCOGTN), affiliated with UC Santa Barbara, use robotically controlled telescopes in Arizona, Hawaii, and Australia. These telescopes provide high quality data used to select the best targets for intense observation. This, together with data from the Nordic Optical Telescope in La Palma, Spain; the Swiss Euler Telescope in Chile; and the Observatoire de Haute Provence in Southern France; provides the final confirmation of the new discoveries.

A total of 46 planets have been found to transit their stars. Since they started operation in 2004, the SuperWASP cameras have found 15 of these. SuperWASP is the most successful transit survey in the world.

The planets discovered by SuperWASP have masses between a middle weight of half the size of Jupiter to more than eight times the size of Jupiter, the largest planet in our solar system.

A number of these new worlds are very exotic. For example, a year, or one orbit, on WASP-12b, is just a bit over one day. This planet is so close to its star that its daytime temperature could reach a searing 2300 degrees Celsius.

Lister and Street from LCOGTN/UCSB are delighted with the results. Street described the discovery as a “very big step forward for the field.”

Lister said, “The flood of new discoveries from SuperWASP will revolutionize our understanding of how planets form. LCOGTN's flexible global network of telescopes is an indispensable part of the worldwide effort to learn about the new planets.”

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>