Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered galaxy cluster in early stage of formation is farthest ever identified

02.04.2008
More than 11 billion light years away, galaxies illuminate evolution of universe

UC Irvine scientists have discovered a cluster of galaxies in a very early stage of formation that is 11.4 billion light years from Earth – the farthest of its kind ever to be detected. These galaxies are so distant that the universe was in its infancy when their light was emitted.

The galaxy proto-cluster, named LBG-2377, is giving scientists an unprecedented look at galaxy formation and how the universe has evolved. Before this discovery, the farthest known event like this was approximately 9 billion light years away.

“When you observe objects this far away, you are actually seeing the universe as it was a very long time ago,” said Jeff Cooke, a McCue Postdoctoral Fellow in physics and astronomy at UCI and lead author of this study. “It is as if a timeline is just sitting out there in front of you. These galaxies represent what the universe looked like well before the Earth existed.”

This research is reported in the online bulletin astro-ph.

Using the Keck Telescope in Hawaii, Cooke detected LBG-2377 while looking for single galaxies. At first, it appeared to be a bright, single object. But after analyzing the wavelengths of its light (galaxies emit light with telltale colors) he discovered it was three galaxies merging together, and likely two additional smaller galaxies.

Scientists use light to look back in time. Because light takes a measurable amount of time to travel, detecting it on Earth today allows scientists to view the source as it was billions of years ago. In the case of LBG-2377, scientists believe the light has been traveling for 11.4 billion years, beginning just a few billion years after the Big Bang when the universe was only 15 percent of its current age. By comparison, the Earth was formed about 4.5 billion years ago.

The process of galaxy formation largely is a mystery. Current theory is that large galaxies formed over time from the interaction and merging of smaller galaxies. This process began more than 12 billion years ago, shortly after the Big Bang. Scientists have observed galaxies merging over a large range of distances and time, providing hard evidence to reinforce the theory. However, using current technology, it is difficult to detect this process at the most extreme distances, when galaxy formation was in its infancy.

Scientists believe galaxy clusters form in a similar manner. As galaxies congregate and interact in large, dense regions of space, the cluster grows with time. Witnessing this process first-hand helps scientists confirm their theory and deepen their understanding of the universe. Galaxy clusters can be detected at extreme distances with current technology because they are bright, but they are difficult to find.

Clusters closer to Earth contain upwards of 1,000 galaxies. Our Milky Way galaxy belongs to a lesser grouping of galaxies called the Local Group, which contains more than 35 galaxies, but only a few bright ones.

“We believe LBG-2377 is a seed that eventually will grow into a massive galaxy cluster,” said James Bullock, director of the Center for Cosmology at UCI and a study co-author.

“Our finding suggests that this is a monster structure being born in a very bright, catastrophic event with a lot of gas and matter collapsing at once,” Bullock said. “We are not just seeing one solitary galaxy. We are seeing a bunch of bright galaxies coming together at the dawn of structure formation in the universe.”

Scientists Elizabeth Barton and Kyle Stewart of UCI, along with Arthur Wolfe of the University of California, San Diego, worked on this study. The research was funded by a Gary McCue Postdoctoral Fellowship and the National Science Foundation.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>