Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers develop tool that 'sees' internal body details 1,000 times smaller

02.04.2008
Doctors' quest to see what is happening inside a living body has been hampered by the limits on detecting tiny components of internal structures and events. Now a team of Stanford University School of Medicine researchers has developed a new type of imaging system that can illuminate tumors in living subjects-getting pictures with a precision of nearly one-trillionth of a meter.

This technique, called Raman spectroscopy, expands the available toolbox for the field of molecular imaging, said team leader Sanjiv Sam Gambhir, MD, PhD, professor of radiology. He is the senior author of a study describing the method that will be published in the March 31 advance online issue of the Proceedings of the National Academy of Sciences.

"This is an entirely new way of imaging living subjects, not based on anything previously used," said Gambhir, who directs the Molecular Imaging Program at Stanford. He said signals from Raman spectroscopy are stronger and longer-lived than other available methods, and the type of particles used in this method can transmit information about multiple types of molecular targets simultaneously.

"Usually we can measure one or two things at a time," he said. "With this, we can now likely see 10, 20, 30 things at once."

Gambhir said he believes this is the first time Raman spectroscopy has been used to image deep within the body, using tiny nanoparticles injected into the body to serve as beacons. When laser light is beamed from a source outside the body, these specialized particles emit signals that can be measured and converted into a visible indicator of their location in the body.

Gambhir compared the Raman spectroscopy work to the development of positron emission tomography discovered 20 or 30 years ago. PET has become a routine hospital imaging technique that uses radioactive molecules to generate a three-dimensional image of body biochemistry. "Nobody understood the impact of PET then," he said, referring to its discovery. "Ten or 15 years from now, people should appreciate the impact of this."

Imaging of animals and humans can be done using a few different methods, including PET, magnetic resonance imaging, computed tomography, optical bioluminescence and fluorescence and ultrasound. However, said Gambhir, none of these methods so far can fulfill all the desired qualities of an imaging tool, which include being able to finely detect small biochemical details, being able to detect more than one target at a time and being cheap and easy to use.

Gambhir's group turned to making good use of the Raman effect, the physical phenomenon that occurs when light from a source such as a laser is shined on an object. When the light hits the object, roughly one in 10 million photons bouncing off the object's molecules has an increase or decrease in energy-called Raman scattering. This scattering pattern, called a spectral fingerprint, is unique to each type of molecule and can be measured.

Postdoctoral scholars Shay Keren, PhD, and Cristina Zavaleta, PhD, co-first authors of the study, found a way to make Raman spectroscopy a medical tool. To get there, they used two types of engineered Raman nanoparticles: gold nanoparticles and single-wall carbon nanotubes.

First, they injected mice with the some of the nanoparticles. To see the nanoparticles, they used a special microscope that the group had adapted to view anesthetized mice exposed to laser light. The researchers could see that the nanoparticles migrated to the liver, where they were processed for excretion.

To be able to detect molecular events, said Zavaleta, they labeled separate batches of spectrally unique Raman nanoparticles with different "tags" - peptides or antibodies - and then injected them into the body simultaneously to see where they went. For example, if each type of particle migrated to a different tumor site, the newly developed Raman microscope would enable the researchers to separate the signals from each batch of particles.

As part of this proof-of-principle work, Gambhir's team tagged the gold nanoparticles with different pieces of proteins that homed in on different tumor molecules.

"We could attach pretty much anything," said Gambhir. The Raman effect also lasts indefinitely, so the particles don't lose effectiveness as indicators as long as they stay in the body.

Using a microscope they modified to detect Raman nanoparticles, the team was able to see targets on a scale 1,000 times smaller than what is now obtainable by the most precise fluorescence imaging using quantum dots.

When adapted for human use, they said, the technique has the potential to be useful during surgery, for example, in the removal of cancerous tissue. The extreme sensitivity of the imager could enable detection of even the most minute malignant tissues.

Gambhir's lab is further studying these Raman nanoparticles to follow their journey throughout the body over the course of several days before they are excreted. They are also optimizing the particle size and dosage, and are evaluating the particles for potential toxicity. Gambhir is publishing a study in the March 30 issue of Nature Nanotechnology indicating that the carbon nanotubes are not likely toxic in mice.

A clinical trial is planned to test the gold nanoparticles in humans for possible use in conjunction with a colonoscopy to indicate early-stage colorectal cancer.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>