Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bombardier beetle, power venom, and spray technologies

01.04.2008
The bombardier beetle is inspiring designers of engines, drug-delivery devices and fire extinguishers to improve spray technologies, writes Andy McIntosh, from Leeds University, and Novid Beheshti, of Swedish Biomimetics 3000 Ltd, in April’s Physics World.

The bombardier beetle, found mainly in Africa and Asia, is remarkable in that it can fire a powerful jet of hot, toxic fluid to fight off predators such as birds and frogs. While the chemical reaction that makes the venom has been understood for some time, the actual power behind the venomous squirt, which can travel as far as 20cm, has been cause for speculation.

Quantities of hydroquinone and hydrogen peroxide gases build up in the beetle’s abdomen but, when necessary for defence, get mixed together in a connected ‘combustion chamber’ to produce toxic benzoquinone. This hot fluid is then fired off at force in the face of enemy predators.

The key to the beetle’s powerful defensive trick is in its combustion chamber’s inlet (or entry) and exit valves. The inlet valve opens to receive the chemicals, which begin to boil as soon as they meet, and closes when a sufficient amount of gas has been received.

As the gases react together, they generate heat and increase the pressure in the closed chamber. When the pressure reaches a critical point, the end of the exit valve is forced open and the hot fluid is ejected as a powerful burst of toxic steam in a process known as "flash evaporation".

Once the gas is released, the exit valve closes, the inlet valve opens and the chamber fills again, preparing for the next venomous ejection.

The research team at the School of Process, Environmental and Materials Engineering at Leeds University has now managed to replicate how the bombardier beetle fires hot venom. In a series of experiments using just water (rather than venomous liquids), McIntosh and his team have been able to fire pulses of hot spray distances of up to 4 m and have been able to control the size of the droplets in the spray. The technique has now been licensed by Biomimetics 3000 Ltd for industrial applications.

This new technology is likely to be of interest to firms making drug-delivery systems as it could prove far more reliable than the mechanically-driven spring technology used in, for example, inhalers. It could also provide a much more energy-resourceful mechanism for fuel-injection in car engines and even lead to a new generation of fire extinguishers that can both produce either a fine mist or large droplets depending on what type of fire needs to be put out.

Joseph Winters | alfa
Further information:
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>