Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bombardier beetle, power venom, and spray technologies

01.04.2008
The bombardier beetle is inspiring designers of engines, drug-delivery devices and fire extinguishers to improve spray technologies, writes Andy McIntosh, from Leeds University, and Novid Beheshti, of Swedish Biomimetics 3000 Ltd, in April’s Physics World.

The bombardier beetle, found mainly in Africa and Asia, is remarkable in that it can fire a powerful jet of hot, toxic fluid to fight off predators such as birds and frogs. While the chemical reaction that makes the venom has been understood for some time, the actual power behind the venomous squirt, which can travel as far as 20cm, has been cause for speculation.

Quantities of hydroquinone and hydrogen peroxide gases build up in the beetle’s abdomen but, when necessary for defence, get mixed together in a connected ‘combustion chamber’ to produce toxic benzoquinone. This hot fluid is then fired off at force in the face of enemy predators.

The key to the beetle’s powerful defensive trick is in its combustion chamber’s inlet (or entry) and exit valves. The inlet valve opens to receive the chemicals, which begin to boil as soon as they meet, and closes when a sufficient amount of gas has been received.

As the gases react together, they generate heat and increase the pressure in the closed chamber. When the pressure reaches a critical point, the end of the exit valve is forced open and the hot fluid is ejected as a powerful burst of toxic steam in a process known as "flash evaporation".

Once the gas is released, the exit valve closes, the inlet valve opens and the chamber fills again, preparing for the next venomous ejection.

The research team at the School of Process, Environmental and Materials Engineering at Leeds University has now managed to replicate how the bombardier beetle fires hot venom. In a series of experiments using just water (rather than venomous liquids), McIntosh and his team have been able to fire pulses of hot spray distances of up to 4 m and have been able to control the size of the droplets in the spray. The technique has now been licensed by Biomimetics 3000 Ltd for industrial applications.

This new technology is likely to be of interest to firms making drug-delivery systems as it could prove far more reliable than the mechanically-driven spring technology used in, for example, inhalers. It could also provide a much more energy-resourceful mechanism for fuel-injection in car engines and even lead to a new generation of fire extinguishers that can both produce either a fine mist or large droplets depending on what type of fire needs to be put out.

Joseph Winters | alfa
Further information:
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>