Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Substorms From Ground And Space

01.04.2008
One of the most dynamic events in the interaction between the Sun and the Earth is a ‘substorm’, an explosive reshaping of the Earth’s outer magnetic field.

To better understand substorms, scientists in Europe and North America are studying them from space using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites launched by NASA in 2007 and from the ground using a network of all-sky cameras. In her talk on Tuesday 1 April at the RAS National Astronomy Meeting in Belfast, University of Lancaster solar-terrestrial scientist Dr Emma Woodfield will present the first few months of results from the Rainbow cameras newly installed in southern Iceland that complement this network.

Best seen from within the Arctic and Antarctic Circles, the northern and southern lights (aurora borealis and aurora australis) are the most visible way in which the Sun affects the upper atmosphere and magnetic field of the Earth. More severe consequences of the interaction between the Sun and the Earth include disruption to radio communications, GPS systems and satellite electronics and overloaded power grids. This has made understanding ‘space weather’ a priority for physicists around the world.

Substorms result from a build up of energy deposited by the solar wind into the near-Earth environment and at their onset there is a dramatic increase in the intensity and activity of the aurora. The ground-based Rainbow cameras designed by the University of Calgary, Canada, track rapid changes in the aurora by taking full colour images of the whole sky through a fish-eye lens every 6 seconds.

To fully understand the nature of substorms and to distinguish between the main competing models describing the substorm process there has been a dramatic increase in the number of these ground instruments across Canada and the northern United States. This makes it possible to “join up the dots”, linking what goes on further out in space seen by the THEMIS satellites with the phenomena observed closer to home.

Scientists from Lancaster University have now put into place the first of three cameras that will bridge a gap in coverage between North America and mainland Europe. The ‘Rainbow’ camera was installed at a site maintained by the University of Leicester near Þykkvibær in southern Iceland in October 2007.

In her talk, Dr Woodfield will present images and movies from the Rainbow camera showing the dramatic changes in aurora structure following the onset of a substorm. She is upbeat about the results to date.

“We have had a wonderful first observing season. Now the hard work really begins as we sift through the data for vital clues to how a substorm really works.”

FURTHER INFORMATION (INCLUDING IMAGES AND MOVIES)

Movies and stills from the Rainbow camera:
http://www.dcs.lancs.ac.uk/~kavanage/rainbow.htm
Image caption “Rainbow camera image taken from just after substorm onset on 1 February 2008”, Image: Dr. James Wild, Lancaster University.

Movie caption “The Rainbow camera images captures a quiet auroral arc erupting rapidly at substorm onset, 1 February 2008”. Movie: Dr. James Wild, Lancaster University.

THEMIS mission home page
http://themis.ssl.berkeley.edu/index.shtml
THEMIS Public Outreach website
http://ds9.ssl.berkeley.edu/themis/no_flash.html
RAS National Astronomy Meeting
http://nam2008.qub.ac.uk
SPEARS group web pages, Lancaster University
http://www.dcs.lancs.ac.uk/iono/
RAS home page
http://www.ras.org.uk

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://nam2008.qub.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>