Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Graphene the New Silicon?

31.03.2008
Electrons travel through extremely thin form of graphite with little resistivity

Research results from University of Maryland physicists show that graphene, a new material that combines aspects of semiconductors and metals, could be a leading candidate to replace silicon in applications ranging from high-speed computer chips to biochemical sensors.

The research, funded by the National Science Foundation (NSF) and published online in the journal Nature Nanotechnolgy, reveals that graphene conducts electricity at room temperature with less intrinsic resistance than any other known material.

"Graphene is one of the materials being considered as a potential replacement of silicon for future computing," said NSF Program Manager Charles Ying. "The recent results obtained by the University of Maryland scientists provide directions to achieve high-electron speed in graphene near room temperature, which is critically important for practical applications."

Intrinsic resistance results from the unavoidable lattice vibrations in a material when the temperature is greater than absolute zero. The intrinsic resistance determines a material's mobility, or the speed at which an electrons move when an electric field is applied to the material. The very high mobility of graphene makes it promising for applications in which transistors must switch extremely fast, such as in the processing of extremely high frequency signals. If other extrinsic factors that limit mobility in graphene, such as impurities and lattice vibrations in the substrate on which graphene sits, could be eliminated, the intrinsic mobility in graphene would be higher than any other known material, and more than 100 times higher than silicon.

Graphene is also a very promising material for chemical and biochemical sensing applications in which an electrical signal from, for instance, a molecule adsorbed on the sensing device, is translated into an electrical signal by changing the conductivity of the device. The low resistivity and extremely thin nature of graphene also holds promise for applications in thin, mechanically tough, electrically conducting transparent films. Such films are sorely needed in a variety of electronics applications, from touch screens to photovoltaic cells.

Principal investigator Michael Fuhrer of the University of Maryland's Center for Nanophysics and Advanced Materials and the Maryland NanoCenter, said the electrical current in graphene is carried by only a few electrons moving much faster than the electrons in a metal like silver. "Our current samples of graphene are fairly 'dirty' due to some extraneous sources of resistivity," Fuhrer said. "Once we remove that dirt, graphene, at room temperature, should have about 35 percent less resistivity than silver, the lowest resistivity material known at room temperature."

Media Contacts
Diane Banegas, National Science Foundation (703) 292-4489 dbanegas@nsf.gov
Lee Tune, University of Maryland (301) 405-4679 ltune@accmail.umd.edu
Program Contacts
Charles Ying, National Science Foundation (703) 292-8428 cying@nsf.gov
Principal Investigators
Michael Fuhrer, University of Maryland (301) 405-6143 mfuhrer@umd.edu
Related Websites
University of Maryland news release: http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1621

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Diane Banegas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>