Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Insight Into Origin of Superconductivity in Magnesium Diboride


A team of scientists from the U.S. Department of Energy’s Brookhaven National Laboratory, the U.S. Department of Commerce’s National Institute of Standards and Technology (NIST), and the University of Oslo in Norway has provided new insight into the superconductivity of magnesium diboride (MgB2), an unusual superconductor discovered only last year. The new result appears in the June 17, 2002 issue of Physical Review Letters.

Understanding the origin of superconductivity — the ability of some materials to conduct electricity without losing energy — will help scientists improve magnetic resonance imaging (MRI) and the efficiency of electric power transmission, and build smaller, more powerful electronic devices.

Scientists usually assume that superconductivity arises from electrons coupling in pairs,” said Yimei Zhu, a physicist at Brookhaven’s Advanced Electron Microscopy Facility and lead author of the study. “Though this is the case for most superconductors, it has not been shown yet how electrons contribute to superconductivity in magnesium diboride. So we decided to look more closely at this material’s electronic structure.”

Since the discovery of superconductivity in MgB2, Brookhaven theoretical scientists led by physicists James Davenport and Guenter Schneider have made extensive calculations involving interactions between electrons or between electron “holes,” which are empty locations that could be filled by electrons. According to one of the most prevalent theories, superconductivity in MgB2arises from interactions between holes. Also, because MgB2is made of alternating planes of boron and magnesium atoms aligned parallel to one another, these holes are expected to interact more easily within the planes than between adjacent planes.

Compared to other superconductors, MgB2has a relatively simple structure,” said Johan Tafto, a physicist at the University of Oslo and one of the team members. “So scientists hope to get more insight into superconductivity by focusing their attention on a simple compound rather than on more complex ones.”

To test the theoretical predictions about MgB2, the scientists examined the electron and hole structure of the substance using two complementary techniques. In the first technique, called x-ray absorption spectroscopy, the scientists used very intense x-rays generated by the National Synchrotron Light Source (NSLS) at Brookhaven and a unique NIST x-ray detector. When the x-rays enter the sample, the electrons inside the sample absorb the x-rays and are ejected out of their original positions.

“When these ejected electrons fall into the holes, they reveal the number and density of these holes in the MgB2sample,” said Daniel Fischer, a physicist at NIST who has been working with the x-ray absorption technique for the last 18 years at the NSLS.

The second technique, called electron energy loss spectroscopy, uses state-of-the-art transmission electron microscopes (TEMs) at Brookhaven. Unlike optical microscopes, which use visible light, an electron microscope projects electrons toward the sample. These electrons transfer some of their energy to electrons in the sample, which bump around the sample atoms and reveal the positions of electronic holes in the MgB2 sample.

“We needed to use both techniques because they complement each other very well and lead to a very accurate determination of the distribution and number of electron holes in magnesium diboride,” said Zhu, who leads Brookhaven’s TEM group and has been investigating the electronic structure of materials at the nanoscale (one billionth of a meter) for the last 20 years.

The results agree with the theoretical predictions by showing that interactions between holes in the boron planes do occur in MgB2, and that superconductivity stems from such interactions. Said Tafto, “As we gain more understanding of the properties of magnesium diboride at the atomic level, I am confident that, in the near future, we will be able to relate them to macroscopic properties such as superconductivity — and maybe explain the origin of superconductivity in general.”

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, and the U.S. Department of Commerce

Karen McNulty Walsh | EurekAlert!

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>