Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting warmer – Leeds research brings terahertz closer to everyday use

31.03.2008
A collaboration between the Universities of Leeds and Harvard has turned the heat up on terahertz technology, bringing a handheld terahertz device a step closer to reality.

The Leeds team, led by Professors Edmund Linfield and Giles Davies from the Faculty of Engineering, has recorded the highest operating temperature for a terahertz quantum cascade laser – a technology that scientists believe may unlock the potential of the terahertz frequency range.

Professor Linfield explains: “The potential uses for terahertz technology are huge, but at the moment they are limited to niche applications in, for example, the pharmaceutical industry and astronomy, as the current systems on the market are expensive and physically quite large. The availability of cheap, compact systems would open up a wide range of opportunities in fields including industrial process monitoring, atmospheric science, and medicine.”

Key to exploiting terahertz technology is the production of handheld devices, and one specific type of laser – the quantum cascade laser – will allow the creation of a terahertz device that is small and portable. The problem is, at the moment this type of laser will only function at temperatures of minus 100°C.

So the challenge is to create a terahertz quantum cascade laser which will work at room temperature. While the groups from Leeds and Harvard are still a way off from this, they have succeeded in increasing the laser’s operating temperature by nearly ten degrees, and believe they have the means to improve it yet further.

“We hope to obtain further advances by optimising the methods we used to create the device,” explains Professor Linfield. “We have some radically new design ideas, and also believe that we can make significant improvements in the way we fabricate the lasers.”

Terahertz quantum cascade lasers are created by building layers of compounds of aluminium, gallium and arsenic one atomic monolayer at a time, through a process known as molecular beam epitaxy. Leeds’ Faculty of Engineering is one of a small number of laboratories in the world actively ‘growing’ terahertz quantum cascade lasers at this time, using a molecular beam epitaxy system purchased through the Science Research Infrastructure Fund (SRIF).

In molecular beam epitaxy, the chemicals evaporate from heated cells, and land on a heated, rotating, substrate. Minute changes in temperature, combined with a set of shutters that block the chemical beams, enable the team to adjust the amount of each chemical which is deposited on the substrate, gradually building up the layers they need. To ensure the device works perfectly, there must be no pollutants, so the process is carried out under ultra-high vacuum conditions, approaching the vacuum levels found in outer space.

The equipment and expert use of it by Professor Linfield and his team enabled them to create a device of superior quality. They now believe that they can bring handheld terahertz technology a step closer still.

The research, carried out in collaboration with the group of Professor Frederico Capasso at Harvard University, and supported by the Engineering and Physical Sciences Research Council (EPSRC) is published in Optics Express ( Vol. 16, Issue 5, pp. 3242-3248).

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/index.htm

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>