Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting warmer – Leeds research brings terahertz closer to everyday use

31.03.2008
A collaboration between the Universities of Leeds and Harvard has turned the heat up on terahertz technology, bringing a handheld terahertz device a step closer to reality.

The Leeds team, led by Professors Edmund Linfield and Giles Davies from the Faculty of Engineering, has recorded the highest operating temperature for a terahertz quantum cascade laser – a technology that scientists believe may unlock the potential of the terahertz frequency range.

Professor Linfield explains: “The potential uses for terahertz technology are huge, but at the moment they are limited to niche applications in, for example, the pharmaceutical industry and astronomy, as the current systems on the market are expensive and physically quite large. The availability of cheap, compact systems would open up a wide range of opportunities in fields including industrial process monitoring, atmospheric science, and medicine.”

Key to exploiting terahertz technology is the production of handheld devices, and one specific type of laser – the quantum cascade laser – will allow the creation of a terahertz device that is small and portable. The problem is, at the moment this type of laser will only function at temperatures of minus 100°C.

So the challenge is to create a terahertz quantum cascade laser which will work at room temperature. While the groups from Leeds and Harvard are still a way off from this, they have succeeded in increasing the laser’s operating temperature by nearly ten degrees, and believe they have the means to improve it yet further.

“We hope to obtain further advances by optimising the methods we used to create the device,” explains Professor Linfield. “We have some radically new design ideas, and also believe that we can make significant improvements in the way we fabricate the lasers.”

Terahertz quantum cascade lasers are created by building layers of compounds of aluminium, gallium and arsenic one atomic monolayer at a time, through a process known as molecular beam epitaxy. Leeds’ Faculty of Engineering is one of a small number of laboratories in the world actively ‘growing’ terahertz quantum cascade lasers at this time, using a molecular beam epitaxy system purchased through the Science Research Infrastructure Fund (SRIF).

In molecular beam epitaxy, the chemicals evaporate from heated cells, and land on a heated, rotating, substrate. Minute changes in temperature, combined with a set of shutters that block the chemical beams, enable the team to adjust the amount of each chemical which is deposited on the substrate, gradually building up the layers they need. To ensure the device works perfectly, there must be no pollutants, so the process is carried out under ultra-high vacuum conditions, approaching the vacuum levels found in outer space.

The equipment and expert use of it by Professor Linfield and his team enabled them to create a device of superior quality. They now believe that they can bring handheld terahertz technology a step closer still.

The research, carried out in collaboration with the group of Professor Frederico Capasso at Harvard University, and supported by the Engineering and Physical Sciences Research Council (EPSRC) is published in Optics Express ( Vol. 16, Issue 5, pp. 3242-3248).

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/index.htm

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>