Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New superconducting state verified in experiments

31.03.2008
Superconductors are materials that conduct electrical currents without any loss below a certain temperature. Normally, high magnetic fields destroy the superconductivity, turning the material into a normal conductor.

Novel experiments on organic superconductors revealed a new superconducting phase between the normal conducting and the superconducting state, which was predicted in theory already in 1964. Scientists of the Universities of Geneva/Switzerland, Braunschweig/Germany, Osaka/Japan, and of the Grenoble High Magnetic Field Laboratory in France as well as of the Dresden High Magnetic Field Laboratory of the Forschungszentrum Dresden-Rossendorf were involved in these recent investigations.

Superconductors have no electrical resistance at low temperatures. They are for example applied for magnet coils in magnetic resonance scanners or in particle accelerators. Each superconducting material becomes a normal conductor beyond a certain magnetic field. However, for some materials a new superconducting hybrid phase between the normal and the superconducting state occurs in high magnetic fields and at low temperatures. In this phase, parts of the material stay superconducting whereas other parts turn into the normal-conducting state. Due to this hybrid state the superconductivity can survive also in very high magnetic fields. This state preferably appears in stacked materials that consist of ultra-thin conducting and insulating layers.

Prof. Peter Fulde from the Max Planck Institute for the Physics of Complex Systems in Dresden and Prof. Richard Ferrell predicted the existence of this special superconducting state in 1964. Already at that time it was characterized by a spatial modulation of the superconductivity. At about the same time, two further researchers independently predicted the same phase. Therefore, the state is called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.

First successful experiments on an organic superconductor were performed in static magnetic fields at the Grenoble High Magnetic Field Laboratory in 2007. This material was expected to become a normal conductor at about 22 Tesla (Tesla is the unit for the magnetic flux density and a measure for the strength of the magnetic field). But if the magnetic field is applied parallel to the organic molecule layers the superconductivity can survive also in much higher fields due to the formation of the hybrid phase. The results have been published in ‘Physical Review Letters’.

Recently, a second series of experiments has been finished. Again, researchers of the Dresden High Magnetic Field Laboratory at the Forschungszentrum Dresden Rossendorf contributed to these investigations. The hybrid phase was investigated with another method in more detail and also at lower temperatures. Thus, it was possible to observe superconductivity on that material in high magnetic fields up to 32 Tesla.

Christine Bohnet | alfa
Further information:
http://www.fzd.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>