Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Most Rigid Telescope

18.06.2002


The scientists from NPO Astrofizika, have designed a terrestrial telescope, which has no match all over the world. Fundamentally new technical solutions ensure that a unique telescope with the mirror of 25 meters in diameter is able to investigate previously invisible celestial objects of up to the 29-th magnitude.



What makes astronomers design the telescopes with the larger and larger mirrors? Certainly, astronomers are driven by the capacity of a telescope to provide more information about the Universe. The larger the mirror is, the larger amount of light from one source the telescope can catch, thus enabling the scientists to descry and investigate remoter or smaller objects. At present there are telescopes available with the main mirror of 8 and even 10 meters in diameter. For instance, in Russia the largest is the Zelenchuk telescope with a mirror of 6 meters in diameter. The Americans have installed the telescope in Hawaii and the Europeans - in Chile, the mirrors being 10 meters in diameter, but the astronomers have almost exhausted capacities of these telescopes. Now the astronomers are eager to use a telescope with a larger mirror - as big as of 100 meters in diameter.

However, large mirrors entail significant, sometimes insoluble problems. Such enormous mirrors are difficult to manufacture, install and maintain. Even minor deviations from the standard lead to tremendous distortions and consequently errors. That is why, before starting the development of the super-telescope, the Moscow astrophysicists have analysed the sources of possible errors (they have calculated the budget of errors, as they put it) and have come to the conclusion that it is unreasonable to manufacture a terrestrial telescope with the mirror of more than 25 meters in diameter, as the inevitable distortions will not allow astronomers to obtain more information.


However, a huge mirror is difficult to manufacture. It should not be too heavy, it should be strongly fastened and reliably protected from vibrations - a gust or an earthquake tremor, or even the auxiliary devices operation can loosen the dish which is as big as a playground. And finally, the mirror should be easy to operate, i.e. to turn it in the required direction.

To solve these and multiple other problems, the scientists applied several technical ideas at a time, having had previously patented them. First, they have decided to make a composite mirror, instead of a monolithic one - it will consist of individual controllable mirrors of 1-meter in diameter, the shape of mirrors being that of regular hexagons. The 10-meter mirror of the existing Keck-telescope (USA) was designed in the same way. On top of that, at each moment the mirror will automatically take the shape of the surface, which ensures the high image quality (i.e., adaptive mirror). The Russian scientists have thought out to make even these small mirrors non-monolithic. To enlighten the entire structure and to facilitate the manufacturing, the designers have suggested that these mirrors should be similar to a sandwich consisting of two thin layers, rigidly fastened between themselves by a open-work metal construction. According to the scientists, the remaining free space may be filled in by a light heat-insulating material.

The major thing the scientists have suggested is to reject the traditional form of a telescope, the so-called tube, in which the mirror is normally fixed on the support, an individual dome protecting the tube from the environmental impact. The Russian astronomers` design has made the body fulfil all these functions (support, placement of optical elements and protection). The body is a hollow sphere of 50 meters in diameter with an aperture slightly exceeding the mirror size. The body presents a two-layer truss shell. Its immovable lower part carries the mobile upper part with the main mirror fastened in it. Between them the so-called lodgement is placed, which easily, precisely and accurately turns the upper part with the fastened mirror.

As a result, the designers have managed to ensure unprecedented solidity, reliability and rigidity of the entire structure. In addition, such a design allows the scientists to protect the telescope from vibrations - the whole construction is non-resonant. And finally, the entire telescope turns out to be light (the weight of the mobile part being 800 tons) and inexpensive (for its class, of course), its cost making only USD 99 million.
"In principle, our AST-25 telescope is currently the most rigid, simple, inexpensive and reliable telescope in the world among similar large telescopes already being operated or under development", says Professor Sychev, one of the project designers.

Olga Maksimenko | alfa

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>