Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Femtogram-level chemical measurements now possible

28.03.2008
Finding a simple and convenient technique that combines nanoscale structural measurements and chemical identification has been an elusive goal. With current analytical instruments, spatial resolution is too low, signal-to-noise ratio too poor, sample preparation too complex or sample size too large to be of good service.

Now, researchers at the University of Illinois have demonstrated a method for simultaneous structural and chemical characterization of samples at the femtogram level (a femtogram is one quadrillionth of a gram) and below.

The measurement technique combines the extraordinary resolution of atomic force microscopy and the excellent chemical identification of infrared spectroscopy.

“We demonstrated that imaging, extraction and chemical analysis of femtogram samples can be achieved using a heated cantilever probe in an atomic force microscope,” said William P. King, a Kritzer Faculty Scholar and professor of mechanical science and engineering.

King and colleagues describe the technique in a paper accepted for publication in the journal Analytical Chemistry, and posted on its Web site.

The new technique hinges upon a special silicon cantilever probe with an integrated heater-thermometer. The cantilever tip temperature can be precisely controlled over a temperature range of 25 to 1,000 degrees Celsius.

Using the cantilever probe, researchers can selectively image and extract a very small sample of the material to be analyzed. The mass of the sample can be determined by a cantilever resonance technique.

To analyze the sample, the heater temperature is raised to slightly above the melting point of the sample material. The material is then analyzed by complementary Raman or Fourier transform infrared spectroscopic imaging, which provides a molecular characterization of samples down to femtogram level in minutes.

“Fourier transform infrared and Raman spectroscopic imaging have become commonplace in the last five to ten years,” said Rohit Bhargava, a professor of bioengineering. “Our method combines atomic force microscopy with spectroscopic imaging to provide data that can be rapidly used for spectral analyses for exceptionally small sample sizes.”

To clean the tip for reuse, the tip is heated to well above the decomposition temperature of the sample – a technique similar to that used in self-cleaning ovens.

“Since the tip can be heated to 1,000 degrees Celsius, most organic materials can be readily vaporized and removed in this manner,” King said.

As a demonstration of the technique, the researchers scanned a piece of paraffin with their probe, and removed a sample for analysis. They then used Raman and Fourier transform infrared spectroscopy to chemically analyze the sample. After analysis, the paraffin was removed by thermal decomposition, allowing reuse of the probe.

“We anticipate this approach will help bridge the gap between nanoscale structural analysis and conventional molecular spectroscopy,” King said, “and in a manner widely useful to most analytical laboratories.”

With King and Bhargava, co-authors of the paper are postdoctoral researcher and lead author Keunhan Park and postdoctoral research associate Jung Chul Lee. All four researchers are affiliated with the university’s Beckman Institute.

The work was funded by the National Science Foundation through the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, and by the U. of I.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>