Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firing photons makes advance in space communication

27.03.2008
For the first time, physicists have been able to identify individual returning photons after firing and reflecting them off of a space satellite in orbit almost 1,500 kilometres above the earth. The experiment has proven the possibility of constructing a quantum channel between Space and Earth.

Research published on Friday, 28 March, in the New Journal of Physics, discusses the feasibility of building a completely secure channel for global communication, via satellites in space, all thanks to advances in quantum mechanics.

The research team, led by Paolo Villoresi and Cesare Barbieri from Padova University, Italy, has taken intricate steps to fire photons directly at the Japanese Ajisai Satellite. The researchers have been able to prove that the photons received back at the Matera ground-based station, in southern Italy, are the same as those originally emitted.

This news will be welcomed by communication companies, banks, and MI5-types worldwide as it paves the way for quantum-encrypted communication - the only form of communication that could ensure beyond any doubt that there are no eavesdroppers.

Until now, quantum-encrypted communication has only been proven possible at distances up to about 150 kilometres, either down optical fibres or via telescopes. When sent down optical fibres, photons are dissipated due to scattering and adsorption and, when using telescopes, photons are subject to interfering atmospheric conditions.

Anton Zeilinger, 2008 winner of the Institute of Physics’ premier award, the Newton Medal, was involved in the research. The team now believes that Space-to-Earth quantum communication is possible with available technology.

The scientists write, “We have achieved significant experimental results towards the realization of a quantum communication channel, as well as how to actually adapt an existing laser ranging facility for quantum communication.”

The team will now be furthering the research by making it possible to emit and receive quantum keys, uncrackable strings of 1s and 0s that enable quantum communication from an active sender in space. Very recently, the Italian Space Agency has funded the initial phase of this project.

Joe Winters | alfa
Further information:
http://www.iop.org
http://www.iop.org/News/news_29021.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>