Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firing photons makes advance in space communication

27.03.2008
For the first time, physicists have been able to identify individual returning photons after firing and reflecting them off of a space satellite in orbit almost 1,500 kilometres above the earth. The experiment has proven the possibility of constructing a quantum channel between Space and Earth.

Research published on Friday, 28 March, in the New Journal of Physics, discusses the feasibility of building a completely secure channel for global communication, via satellites in space, all thanks to advances in quantum mechanics.

The research team, led by Paolo Villoresi and Cesare Barbieri from Padova University, Italy, has taken intricate steps to fire photons directly at the Japanese Ajisai Satellite. The researchers have been able to prove that the photons received back at the Matera ground-based station, in southern Italy, are the same as those originally emitted.

This news will be welcomed by communication companies, banks, and MI5-types worldwide as it paves the way for quantum-encrypted communication - the only form of communication that could ensure beyond any doubt that there are no eavesdroppers.

Until now, quantum-encrypted communication has only been proven possible at distances up to about 150 kilometres, either down optical fibres or via telescopes. When sent down optical fibres, photons are dissipated due to scattering and adsorption and, when using telescopes, photons are subject to interfering atmospheric conditions.

Anton Zeilinger, 2008 winner of the Institute of Physics’ premier award, the Newton Medal, was involved in the research. The team now believes that Space-to-Earth quantum communication is possible with available technology.

The scientists write, “We have achieved significant experimental results towards the realization of a quantum communication channel, as well as how to actually adapt an existing laser ranging facility for quantum communication.”

The team will now be furthering the research by making it possible to emit and receive quantum keys, uncrackable strings of 1s and 0s that enable quantum communication from an active sender in space. Very recently, the Italian Space Agency has funded the initial phase of this project.

Joe Winters | alfa
Further information:
http://www.iop.org
http://www.iop.org/News/news_29021.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>