Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs And Explosives: End-To-End Inspection

27.03.2008
Specialists from the Institute of Solid State Physics, Russian Academy of Sciences (town of Chernogolovka, Moscow Region), together with their colleagues from Joined Institute for Nuclear Research and the ASPECT Close Joint-Stock Company – Research and Production Center (town of Dubna, Moscow Region) are developing antiterrorist transmission device for express detection of explosives, toxic and narcotic substances.

The future device operation is based on object translucence by a fast neutron flux and on subsequent recording of spectra of roentgen fluorescence induced by neutrons. Certainly, this is not the safest method for dangerous substances detection – people should be at the twenty to thirty meter distance during the inspection. But, on the other hand, the method is very efficient – nothing can be hidden from such control.

It takes only five minutes to get complete information about the object – its 3D image, including all articles hidden inside the object and their chemical composition. So, one can quickly detect what is hidden inside a truck or a carriage, for example, where heroin or trinitrotoluene is concealed, and where there are simply sugar bags without any dangerous ‘enclosure’.

The device under design has several peculiarities, two of which are most important. One of them is the original neutron scanner construction of a new type based on thin-walled sapphire tubes, and the second is the original construction of X-radiation detectors that are made in the form of 3D matrices of reciprocally intersecting scintillation fibers. These peculiarities enable to perform the inspection quicker, more conveniently and precisely than similar-purpose devices existing so far. Besides, the device dimensions and its power consumption will also decrease significantly.

The device will operate approximately as follows. In the neutron scanner, the flux of deuterons (accelerated in a specially grown sapphire tube) hits the tritium target set at the tube butt-end. At that, each reaction (one hit) forms a fast neutron and an alpha particle (helium nucleus) flying directly in the opposite direction. It is difficult to directly characterize these neutrons (to measure the direction, velocity and energy of each neutron), but it is easy to do than indirectly – with the help of alpha particles paired to them. If a fast neutron flies through the tube walls and further through the object, alpha particles are held back by a thin film of a substance that glows upon interaction with an alpha particle. As a result, it can be determined how many neutrons were formed and in what direction and at what time they ‘flew out’. This is the first step – to detemine characteristics of scanning irradiation.

When a fast neutron collides with an atom, it ‘induces’ the atom for a short while. Coming back to the initial condition, the induced atom nucleus generates (emits) a gamma-quantum with certain energy, this energy being the value typical of atoms of each element. Consequently, recording of such secondary gamma-quantums can determine what elements the object under investigation is made of. Certainly, the ‘gross’ analysis is of no interest – a 3D image is needed to detect where materials of the target composition are located. The detector based on multiple piled thin scintillation fibers (a row is placed lengthwise, another row is placed across like a pile of logs, thus making ten rows altogether) enables to record the source of specified gamma radiation with precise indication to disposition of its thin scintillation fibers, which researchers from the Institute of Solid State Physics (Russian Academy of Sciences) have learnt to grow from melt.

As a result, knowing parameters of the ‘hitting’ neutron flux and precise characteristics of each of neutrons, as well as parameters of induced gamma radiation, one can in principle reveal the genuine contents of the object (of course with the help of a PC and proper software) and to find dangerous articles where no other devices or specially trained keen-nosed dog can detect it. “To be more precise, adds one of the authors, Nikolai Klassen, Ph. D. (Physics&Mathematics), devices based on fast neutrons do exist in principle. But our device is more compact (therefore, it can be produced in a portable version, which is very important for antiterrorist and drug controlling that becomes possible in any location where a suspicious automobile is stopped) and it provides information quicker, to a fuller extent and in a less expensive way.”

In fact, the device per se does not exist yet. Its design has been developed, individual elements are ready, developed and tested. However, some components of the future device exist only ‘on paper’ for the time being – the researchers know how to produce them but the implementation requires funding. Since the work is extremely important not only for scientists but for everybody in general, the funds will hopefully be raised.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>