Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists team up to learn how quantum mechanical states break down

25.03.2008
Collaborative Effort Moves Quantum Computers One Step Closer to Reality

Researchers at the U. S. Department of Energy’s Ames Laboratory, the University of California, Santa Barbara, and Microsoft Station Q have made significant advancements in understanding a fundamental problem of quantum mechanics – one that is blocking efforts to develop practical quantum computers with processing speeds far superior to conventional computers.

Their respective theoretical and experimental studies investigate how microscopic objects lose their quantum-mechanical properties through interactions with the environment. The results of the researchers’ investigations were announced at the American Physical Society meeting held March 10-14 in New Orleans and also reported in Science Express, the advance online publication of the journal Science.

“Quantum-mechanical particles can interact with their environments: visible light, or photons; molecules of the air; crystal vibrations; and many other things,” said Viatcheslav Dobrovitski, an Ames Laboratory theoretical physicist. “All these uncontrollable interactions randomly ‘kick’ the system, destroying quantum phases, or the ability of particles to preserve coherence between different quantum states.”

Quantum coherence is essential to developing quantum computers in which information would be stored and processed on quantum mechanical states of quantum bits, called qubits. So the self-destructive nature of quantum-mechanical states interacting with the environment is a huge problem.

To find out more about how quantum coherence breaks down and to study the dynamics of this decoherence process, the Ames Lab, UCSB and Microsoft Station Q team studied certain spin systems, called nitrogen-vacancy, N-V, impurity centers, in diamond. (Spin is the intrinsic angular momentum of an elementary particle, such as an electron.) N-V impurity centers in diamond are interesting because of the ability to control and manipulate the quantum state of a single center, allowing scientists to study the loss of coherence at a single-particle scale.

The Ames Lab, UCSB and Microsoft Station Q researchers were able to manipulate the N-V centers interacting with an environment of nitrogen spins in a piece of diamond. Amazingly, the physicists were able to tune and adjust the environmental interference extremely well, accessing surprisingly different regimes of decoherence in a single system. The scientists showed that the degree of interaction between the qubit and the interfering environment could be regulated by applying a moderate magnetic field. By using analytical theory and advanced computer simulations, they gained a clear qualitative picture of the decoherence process in different regimes, and also provided an excellent quantitative description of the quantum spin dynamics. The experiments were performed at room temperature rather than the extremely low temperatures often required for most atomic scale investigations.

These images depicting coherently driven spin oscillations of a nitrogen-vacancy (N-V) center show the excellent level of agreement achieved between experiment, analytical theory and computer simulation in the research on the fundamental physics of a single quantum spin by Ames Laboratory, the University of California, Santa Barbara, and Microsoft Station Q.

Dobrovitski noted that quantum coherence of N-V centers in diamond is being studied by leading scientific groups worldwide. “The combined efforts of these groups could help in opening the way to developing a series of interacting qubits – steps to a quantum computer – where each N-V center would act as a qubit,” he said.

“In addition to quantum computers, quantum coherence plays an important role for future less exotic, but not less spectacular, applications,” said Dobrovitski. “For instance, quantum spins can be employed to develop coherent spintronic devices, which would work much faster than traditional microelectronic elements and dissipate much less energy. Quantum coherence between many spins can be employed to perform measurements with ultrahigh precision for metrology applications or to drastically increase the sensitivity of modern nuclear magnetic resonance, NMR, or electron spin resonance, ESR, experiments.

“However, in order to implement these appealing proposals, a very good understanding of quantum coherence and its destruction by the environment is needed,” Dobrovitski emphasized. In particular, from the application point of view, it is important to understand the loss of coherence of quantum systems in solid-state environments, which form the basis of modern technology.”

The DOE Office of Science, Basic Energy Sciences Office and the Air Force Office of Scientific Research funded this research on the fundamental physics of a single quantum spin.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>