Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists team up to learn how quantum mechanical states break down

25.03.2008
Collaborative Effort Moves Quantum Computers One Step Closer to Reality

Researchers at the U. S. Department of Energy’s Ames Laboratory, the University of California, Santa Barbara, and Microsoft Station Q have made significant advancements in understanding a fundamental problem of quantum mechanics – one that is blocking efforts to develop practical quantum computers with processing speeds far superior to conventional computers.

Their respective theoretical and experimental studies investigate how microscopic objects lose their quantum-mechanical properties through interactions with the environment. The results of the researchers’ investigations were announced at the American Physical Society meeting held March 10-14 in New Orleans and also reported in Science Express, the advance online publication of the journal Science.

“Quantum-mechanical particles can interact with their environments: visible light, or photons; molecules of the air; crystal vibrations; and many other things,” said Viatcheslav Dobrovitski, an Ames Laboratory theoretical physicist. “All these uncontrollable interactions randomly ‘kick’ the system, destroying quantum phases, or the ability of particles to preserve coherence between different quantum states.”

Quantum coherence is essential to developing quantum computers in which information would be stored and processed on quantum mechanical states of quantum bits, called qubits. So the self-destructive nature of quantum-mechanical states interacting with the environment is a huge problem.

To find out more about how quantum coherence breaks down and to study the dynamics of this decoherence process, the Ames Lab, UCSB and Microsoft Station Q team studied certain spin systems, called nitrogen-vacancy, N-V, impurity centers, in diamond. (Spin is the intrinsic angular momentum of an elementary particle, such as an electron.) N-V impurity centers in diamond are interesting because of the ability to control and manipulate the quantum state of a single center, allowing scientists to study the loss of coherence at a single-particle scale.

The Ames Lab, UCSB and Microsoft Station Q researchers were able to manipulate the N-V centers interacting with an environment of nitrogen spins in a piece of diamond. Amazingly, the physicists were able to tune and adjust the environmental interference extremely well, accessing surprisingly different regimes of decoherence in a single system. The scientists showed that the degree of interaction between the qubit and the interfering environment could be regulated by applying a moderate magnetic field. By using analytical theory and advanced computer simulations, they gained a clear qualitative picture of the decoherence process in different regimes, and also provided an excellent quantitative description of the quantum spin dynamics. The experiments were performed at room temperature rather than the extremely low temperatures often required for most atomic scale investigations.

These images depicting coherently driven spin oscillations of a nitrogen-vacancy (N-V) center show the excellent level of agreement achieved between experiment, analytical theory and computer simulation in the research on the fundamental physics of a single quantum spin by Ames Laboratory, the University of California, Santa Barbara, and Microsoft Station Q.

Dobrovitski noted that quantum coherence of N-V centers in diamond is being studied by leading scientific groups worldwide. “The combined efforts of these groups could help in opening the way to developing a series of interacting qubits – steps to a quantum computer – where each N-V center would act as a qubit,” he said.

“In addition to quantum computers, quantum coherence plays an important role for future less exotic, but not less spectacular, applications,” said Dobrovitski. “For instance, quantum spins can be employed to develop coherent spintronic devices, which would work much faster than traditional microelectronic elements and dissipate much less energy. Quantum coherence between many spins can be employed to perform measurements with ultrahigh precision for metrology applications or to drastically increase the sensitivity of modern nuclear magnetic resonance, NMR, or electron spin resonance, ESR, experiments.

“However, in order to implement these appealing proposals, a very good understanding of quantum coherence and its destruction by the environment is needed,” Dobrovitski emphasized. In particular, from the application point of view, it is important to understand the loss of coherence of quantum systems in solid-state environments, which form the basis of modern technology.”

The DOE Office of Science, Basic Energy Sciences Office and the Air Force Office of Scientific Research funded this research on the fundamental physics of a single quantum spin.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>