Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death of massive star creates brightest burst ever seen

25.03.2008
Astronomers have found by far the most distant naked-eye object ever seen.

Gamma-Ray Bursts are the most powerful explosive events in the Universe. They occur in far-off galaxies and so are usually faint. But on the morning of March 19th 2008 the Swift satellite found a burst which was so bright it could have been seen without binoculars or a telescope even though it was seven thousand times further away than the Andromeda galaxy.

The burst was discovered by the Swift satellite on a fantastic day for GRB hunters. Swift typically finds only two a week; but for the first time Swift found five bursts within 24 hours. The second burst of the day is the new record holder. The enormous energy released in the explosion – brighter than the light from all of the stars in five million Milky Way Galaxies – was caused by the death of a massive star which collapsed to form a black hole.

Dr. Julian Osborne of the University of Leicester, lead investigator for the Swift UK Science Data Centre, said “It’s great to find so many GRBs in one day, and the discovery of the brightest burst ever seen will allow us to explore this incredible explosion in exquisite detail.”

The location of the burst was rapidly pinpointed using the UK-built X-ray and Optical cameras on Swift. Dr. Paul O’Brien, also of the University of Leicester and a member of the Swift Science Team said, “The explosion happened at a distance of over twenty billion light years from Earth. To detect a naked eye object from such a distance really is extraordinary.”

Astronomers around the world are now observing the decaying glow from this burst as it fades away. These include UK teams from the Universities of Leicester, Warwick and Hertfordshire using the Gemini-North Telescope in Hawaii and the Liverpool John Moores University using the Liverpool Telescope on La Palma in the Canary Islands.

Professor Nial Tanvir, of the University of Leicester, said: “Our Gemini observations allowed us to measure the distance to the GRB, and to investigate the behaviour of gas close to the burst as it was blasted by the energy of the explosion”.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>