Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science with the solar space observatory Hinode

20.03.2008
The solar space observatory Hinode was launched in September 2006 [1], with the name "Hinode" meaning sunrise in Japanese. The Hinode satellite carries a solar optical telescope (SOT), an X-ray telescope (XRT), and an EUV imaging spectrometer (EIS).

Hinode investigates both the interior and the atmospheric regions of the Sun. Its primary objectives are to address the origin of the Sun's magnetic field, the driving force behind solar eruptive events, and the nature of the hot corona.

As recognition of the impact of Hinode on various branches of solar physics, Astronomy & Astrophysics is publishing a special feature this week consisting of 18 Letters that present the new results obtained with Hinode. These papers focus on the physics of sunspots, the emergence of magnetic flux on the solar surface, and the dynamics in the solar corona. Figure 1 illustrates these topics.

A handful of these papers are about sunspots, which are still mysterious in several aspects. They highlight the fine structure of the penumbra, which is the ring of radial structures surrounding the dark core of the spots (see Fig. 2). They present new evidence that the penumbra consists of sea-serpent-like magnetic flux tubes, embedded in a background wrapped around these tubes and connected to magnetic features outside the spot.

Several papers also study the dynamics of the solar corona, focusing on active solar regions and coronal mass ejections (CME, also known as transient events, illustrated on Fig. 3). The new Hinode observations show that the standard scenario describing solar flares do not fit microflares. The high resolution of the soft X-ray telescope on Hinode (see Fig. 4) will help to distinguish between different scenarios.

The papers published this week in A&A – which illustrate only a small part of the science with the new data – show new directions in solar research facilitated by the new solar space telescope Hinode. Through observations of all atmospheric layers of the Sun, from the photosphere and chromosphere into the corona, data from the Hinode observatory provide new insight into the structure and dynamics of the solar atmosphere, an important step toward a better understanding of stellar atmospheres in general.

Figures available at http://www.aanda.org/content/view/291/42/lang,en/

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/291/42/lang,en/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>