Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble finds first organic molecule on extrasolar planet

20.03.2008
The tell-tale signature of the molecule methane in the atmosphere of the Jupiter-sized extrasolar planet HD 189733b has been found with the Hubble Space Telescope.

Under the right circumstances methane can play a key role in prebiotic chemistry – the chemical reactions considered necessary to form life as we know it. Although methane has been detected on most of the planets in our Solar System, this is the first time any organic molecule has been detected on a world orbiting another star.


Artist’s impression of the extrasolar planet HD 189733b, now known to have methane and water. Astronomers used the Hubble Space Telescope to detect methane — the first organic molecule found on an extrasolar planet. Hubble also confirmed the presence of water vapour in the Jupiter-size planet’s atmosphere, a discovery made in 2007 with the help of the Spitzer Space Telescope. They made the finding by studying how light from the host star filters through the planet’s atmosphere.

This discovery proves that Hubble and upcoming space missions, such as the NASA/ESA/CSA James Webb Space Telescope, can detect organic molecules on planets around other stars by using spectroscopy, which splits light into its components to reveal the “fingerprints” of various chemicals.

“This is a crucial stepping stone to eventually characterising prebiotic molecules on planets where life could exist”, said Mark Swain of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, USA, who led the team that made the discovery. Swain is lead author of a paper in the 20 March issue of Nature.

The discovery comes after extensive observations made in May 2007 with Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It also confirms the existence of water molecules in the planet’s atmosphere, a discovery made originally by NASA’s Spitzer Space Telescope in 2007. “With this observation there is no question whether there is water or not – water is present”, said Swain.

The planet, HD 189733b, now known to have methane and water vapour is located 63 light-years away in the constellation Vulpecula, the little fox. HD 189733b, a “hot Jupiter”-type extrasolar planet, is so close to its parent star that it takes just over two days to complete an orbit. “Hot Jupiters” are the size of Jupiter but orbit closer to their stars than the tiny innermost planet Mercury in our Solar System. HD 189733b’s atmosphere swelters at 900 degrees C, about the same temperature as the melting point of silver.

The observations were made as the planet HD 189733b passed in front of its parent star in what astronomers call a transit. As the light from the star passed briefly through the atmosphere along the edge of the planet, the gases in the atmosphere imprinted their unique signatures on the starlight from the star HD 189733. According to co-author Giovanna Tinetti from the University College London and the European Space Agency: “Water alone could not explain all the spectral features observed. The additional contribution of methane is necessary to fit the Hubble data”.

Methane, composed of carbon and hydrogen, is one of the main components of natural gas, a petroleum product. On Earth, methane is produced by a variety of sources: natural sources such as termites, the oceans and wetland environments, but also from livestock and manmade sources like waste landfills and as a by-product of energy generation. Tinetti is however quick to rule out any biological origin of the methane found on HD 189733b. “The planet’s atmosphere is far too hot for even the hardiest life to survive — at least the kind of life we know from Earth. It’s highly unlikely that cows could survive here!”

The astronomers were surprised to find that the planet has more methane than predicted by conventional models for “hot Jupiters”. This type of hot planet should have much more carbon monoxide than methane but HD 189733b doesn’t. Tinetti explains: “A sensible explanation is that the Hubble observations were more sensitive to the dark night side of this planet where the atmosphere is slightly colder and the photochemical mechanisms responsible for methane destruction are less efficient than on the day side”.

Though the star-hugger planet is too hot for life as we know it, “this observation is proof that spectroscopy can eventually be done on a cooler and potentially habitable Earth-sized planet orbiting a dimmer red dwarf-type star”, Swain said. The ultimate goal of studies like these is to identify prebiotic molecules in the atmospheres of planets in the “habitable zones” around other stars, where temperatures are right for water to remain liquid rather than freeze or evaporate away.

“These measurements are an important step to our ultimate goal of determining the conditions, such as temperature, pressure, winds, clouds, etc., and the chemistry on planets where life could exist. Infrared spectroscopy is really the key to these studies because it is best matched to detecting molecules”, said Swain.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0807.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>