Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A High Power Laser Zap to Nanotechnology

19.03.2008
With the predicted ramping up of nanotechnology based materials over the next decade, expectations are high that demand for high-tech materials will also skyrocket.

Already the evidence is present for a revolution in the manufacture of materials based on nano-engineered structures. However, prior to these “nanomaterials” becoming dominant in the marketplace a precise understanding of how to tailor their properties for specific applications, coupled with cheap, reliable fabrication methods is required.

Scientists at the Advanced Technology Institute (ATI) of the University of Surrey and at the School of Chemistry in the University of Bristol have been awarded funding of nearly £0.87M from the Engineering and Physical Sciences Research Council (EPSRC) to investigate techniques using high-power, short-pulsed lasers for the production of important nanomaterials, including nanoclusters, nanotubes and nanorods of carbon and zinc oxide, with controllable electrical and optical properties. These techniques, including pulsed laser deposition and laser annealing, are ideal research tools for rapid investigation of a wide variety of synthesis environments, which should enable a plethora of new technologically significant nanomaterials. This project will be highly synergistic, addressing the full range of challenges, from obtaining a fundamental understanding of the growth processes to producing physical, chemical and biological sensors based on the products.

The ATI’s Dr. Simon Henley, who will spearhead the research effort, said;
"A focused short laser pulse can produce very extreme conditions, such as high temperatures and pressures, but only at the point of focus of the beam. We can use these conditions to generate highly energetic atoms and ions to drive a synthesis that would normally require the whole reaction to be performed in a high temperature furnace.”

He added; “This collaboration brings together two groups with well-matched expertise in complementary areas. The group at Bristol specialises in obtaining a precise understanding of the chemistry occurring during laser synthesis, via optical and mass spectrometry, and the laser deposition research at the ATI focuses on producing nano-scale electronic and optical devices.”

Prof. Mike Ashfold, lead researcher at Bristol commented;
"It is good to have two current EPSRC Portfolio Partnerships working so closely. Without such a bold initiative by EPSRC five years ago this sort of highly enabling research would not have been possible. We are very excited about the potential outcomes of this collaboration.”
Prof. Ravi Silva, Director of the ATI explained;
"High quality research collaborations such as these take time to build and support received from EPSRC has encouraged this. We look forward to working closely with industry and forging new links in novel nano-material production associated with laser processing. The ATI is particularly strong in examining the potential for spinout activities in nanotechnology, as seen by its recent record and growing patent portfolio. We are confident this project will allow us to continue this trend.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>