Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-fast, ultra-intense laser has clean-cut advantage

17.03.2008
MU laser lab will enable researchers to change the face of medicine

Many people equate lasers with a sci-fi battle in a galaxy far, far away or, closer to home, with grocery store scanners and compact disc players. However, an ultra-fast, ultra-intense laser, or UUL, with laser pulse durations of one quadrillionth of a second, otherwise known as one femtosecond, could change cancer treatments, dentistry procedures, precision metal cutting, and joint implant surgeries.

“The femtosecond laser has now entered the era of applications. It used to be a novelty, a fantasy,” said University of Missouri researcher Robert Tzou, the James C. Dowell professor and chairman of the department of Mechanical and Aerospace Engineering. “We are currently targeting the areas of life-science and bio-medicine.”

What makes the femtosecond laser different from other lasers is its unique capacity to interact with its target without transferring heat to the area surrounding its mark. The intensity of the power gets the job done while the speed ensures heat does not spread. Results are clean cuts, strong welds and precision destruction of very small targets, such as cancer cells, with no injury to surrounding materials. Tzou hopes that the laser would essentially eliminate the need for harmful chemical therapy used in cancer treatments.

“If we have a way to use the lasers to kill cancer cells without even touching the surrounding healthy cells, that is a tremendous benefit to the patient,” Tzou said. “Basically, the patient leaves the clinic immediately after treatment with no side effects or damage. The high precision and high efficiency of the UUL allows for immediate results.”

Practical applications of this type of laser also include, but aren’t limited to, the ability to create super-clean channels in a silicon chip. That process can allow doctors to analyze blood one cell at a time as cells flow through the channel. The laser can be used in surgery to make more precise incisions that heal faster and cause less collateral tissue damage. In dentistry, the laser can treat tooth decay without harming the rest of the tooth structure.

Associate Professor Yuwen Zhang and Professor Jinn-Kuen Chen recently received a grant from the National Science Foundation to use the laser to “sinter” metal powders—turn them into a solid, yet porous, mass using heat but without massive liquefaction—a process which can help improve the bond between joint implants and bone.

“With the laser, we can melt a very thin strip around titanium micro- and nanoparticles and ultimately control the porosity of the bridge connecting the bone and the alloy,” Zhang said. “The procedure allows the particles to bond strongly, conforming to the two different surfaces.”

Tzou said the installation of a new laser laboratory at MU will enable research teams to “aggressively pursue success at a national level.” The femtosecond laser lab, components of which were installed in January, was made possible through a gift from engineering alumnus Bill Thompson and his wife Nancy. Tzou noted that the arrival of the lab at MU has initiated additional funding requests that will utilize the new femtosecond laser in research. Zhang, Chen and engineering professor Frank Feng also were the recipients of a United States Department of Defense grant to research possible military applications of the UUL.

Tzou said most research with femtosecond lasers, thus far, has focused on engineering materials such as metals and semiconductors. Because of the unique infrastructure at MU, where the college of engineering and the medical school are located on the same campus, Tzou has been able to attract faculty members who have renowned expertise in medicine and laser technology to collaborate.

Bryan E. Jones | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>