Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing with individual atoms

13.06.2002


Researchers at the University of Michigan’s Center for Optical Coherent and Ultrafast Science (FOCUS) and Department of Physics have reported the first demonstration of laser-cooling of individual trapped atoms of different species. This may be an important step in the construction of a future "quantum computer," in which quantum superpositions of inputs are processed simultaneously in a single device. Trapped atoms offer one of the only realistic approaches to precisely controlling the complex quantum systems underlying a quantum computer.



The demonstration is described in the April 2002 issue of Physical Review in an article, "Sympathetic Cooling of Trapped Cd+ Isotopes," by Boris B. Blinov, Louis Deslauriers, Patricia Lee, Martin J. Madsen, Russ Miller, and Christopher Monroe. Partially based on these results, Monroe has proposed a new "Architecture for a Large-Scale Ion-Trap Quantum Computer," with co-authors David Kielpinski (MIT) and David Wineland (National Institute of Standards and Technology), in the June 13 issue of the journal Nature.

Interest in quantum computing has mushroomed in the last decade as its potential for efficiently solving difficult computing tasks, like factoring large numbers and searching large databases, has become evident. Encryption and its obverse, codebreaking, are just two of the applications envisioned for quantum computing if and when it becomes a practical technology. Quantum computation has captured the imagination of the scientific community, recasting some of the most puzzling aspects of quantum physics---once pondered by Einstein, Schroedinger and others---in the context of advancing computer science. "Right now, there’s a lot of black magic involved in understanding what makes a quantum computer tick and how to actually build one," Monroe said. "Many physicists doubt we’ll ever be able to do it, but I’m an optimist. We may not get there for decades, but given enough time and resources---and failing unexpected roadblocks like the failure of quantum mechanics---we should be able to design and build a useable quantum computer. It’s a risky business, but the potential payoff is huge."


In their experiment, the Michigan researchers used electric fields to confine a crystal of exactly two Cd+ atoms of different isotopes. They were able to cool the single 112Cd+ atom to a chilly 0.001 degree Celsius above absolute zero through direct laser cooling of the neighboring 114Cd+ atom. Laser cooling of this "refrigerator atom" removes unwanted motion in the atom crystal without affecting the internal state of the other atom. This is an important step toward scaling a trapped atom computer, where "qubits" of information are stored in the quantum states within the individual atoms.

The architecture proposed in the Nature article describes a "quantum charge-coupled device" (QCCD) consisting of a large number of interconnected atom traps. A combination of radiofrequency (RF) and quasistatic electric fields can be used to change the operating voltages of these traps, confining a few charged atoms in each trap or shuttling them from trap to trap, and the traps can be combined to form complex structures. The cooling of multiple species demonstrated at Michigan is a key component of this broader proposal.

"This is a realistic architecture for quantum computation that is scalable to large numbers of qubits," the authors conclude. "In contrast to other proposals, all quantum state manipulations necessary for our scheme have already been experimentally tested with small numbers of atoms, and the scaling up to large numbers of qubits looks straightforward."


For more information, contact Christopher Monroe, (734) 615-9625, crmonroe@umich.edu. To learn more about FOCUS, visit http://www.umich.edu/~focuspfc/.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

EDITORS: Graphics can be seen at http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html. High-resolution versions available on request.

Judy Steeh | EurekAlert
Further information:
http://www.umich.edu/~focuspfc
http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>