Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers find grains of sand around distant stars

Study provides clues about the formation of Earth-like planets

In a find that sheds light on how Earth-like planets may form, astronomers this week reported finding the first evidence of small, sandy particles orbiting a newborn solar system at about the same distance as the Earth orbits the sun. The report will be published online this week by the journal Nature.

"Precisely how and when planets form is an open question," said study co-author Christopher Johns-Krull, assistant professor of physics and astronomy at Rice University. "We believe the disk-shaped clouds of dust around newly formed stars condense, forming microscopic grains of sand that eventually go on to become pebbles, boulders and whole planets."

In previous studies, astronomers have used infrared heat signals to identify microscopic dust particles around distant stars, but the method isn't precise enough to tell astronomers just how big they become, and whether the particles orbit near the star, like the Earth does the sun, or much further away at a distance more akin to Jupiter or Saturn.

In the new study, Johns-Krull and co-authors in the United States, Germany and Uzbekistan used reflected light from the sand itself to confirm the Earth-like orbit of grainy particles around a pair of stars called KH-15D in the constellation Monoceros. The stars are about 2,400 light years from Earth in the Cone Nebula, and they are only about 3 million years old, compared to the sun's 4.5 billion years.

"We were attracted to this system because it appears bright and dim at different times, which is odd," Johns-Krull said.

The researchers found that the Earth has a nearly edge-on view of KH-15D. From this perspective, the disk blocks one of the stars from view, but its twin has an eccentric orbit that causes it to rise above the disk at regular intervals.

"These eclipses let us study the system with the star there and with the star effectively not there," Johns-Krull said. "It's a very fortuitous arrangement because when the star is there all the time, it's so bright that we can't see the sand."

The team conducted both photometric and spectrographic analyses of data collected during the past 12 years from a dozen observatories, including the McDonald Observatory in west Texas, the Keck Observatory in Hawaii and the VLT on Mount Paranal in Chile.

"Because of how the light is being reflected there are opportunities to make observations about the chemical composition of these sand-like particles," said co-author William Herbst, an astronomer at Wesleyan University in Middletown, Conn. "That's very exciting because it opens up so many doors for new type of research on this disk."

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>