Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naval Research Laboratory to design lunar telescope to see into the dark ages

13.03.2008
A team of scientists and engineers led by the Naval Research Laboratory (NRL) will study how to design a telescope on the Moon for peering into the last unexplored epoch in the Universe’s history.

NASA has announced that it will sponsor a series of studies focusing on next-generation space missions for astronomy. These studies will contribute to the Decadal Survey, an effort undertaken every 10 years by astronomers and physicists to help establish priorities for future research directions in astronomy and astrophysics. The upcoming Decadal Survey occurs over the next two years.

Among the missions to be studied is the Dark Ages Lunar Interferometer (DALI), the NRL-led concept for a telescope based on the Moon and studying an era of the young Universe, during the first 100 million years of its existence. Although the night sky is filled with stars, these stars did not form instantaneously after the Big Bang. There was an interval, now called the “Dark Ages,” in which the Universe was unlit by any star. The most abundant element in the Universe, and the raw material from which stars, planets, and people are formed, is hydrogen. Fortunately, the hydrogen atom can produce a signal in the radio-wavelength part of the spectrum, at 21 cm; a wavelength far longer than what the human eye can detect. If these first signals from hydrogen atoms in the Dark Ages can be detected, astronomers can essentially probe how the first stars, the first galaxies, and ultimately the modern Universe evolved.

Because the Universe is expanding, the signals from these distant hydrogen atoms will be stretched (or redshifted) to much longer wavelengths, as large as several meters. While astronomical observations at radio wavelengths have a long history, this portion of the electromagnetic spectrum is now heavily used for various civil and military transmissions, all of which are millions of times brighter than the hydrogen signal that astronomers seek to detect. Additionally, the upper layers of the Earth’s atmosphere are ionized (the ionosphere), which introduce distortions into astronomical signals as they pass through on their way to telescopes on the ground.

With no atmosphere and shielding from the Earth, the far side of the Moon presents a nearly ideal environment for a sensitive Dark Ages telescope. In NRL’s DALI concept, scientists and engineers will investigate novel antenna constructions, methods to deploy the antennas, electronics that can survive in the harsh lunar environment, and related technology in preparation for developing a roadmap for research and development of a lunar telescope over the next decade. The team will also build on their experience in developing the Radio Observatory for Lunar Sortie Science, a NASA-funded study of a pathfinding array that would be located on the near side of the Moon.

The project leader at NRL, Dr. Joseph Lazio, pointed out that DALI will be one of the most powerful telescopes ever built and will bring us closer than we have ever been to understanding where our Universe came from and where it is going. “Probing the Dark Ages presents the opportunity to watch the young Universe evolve,” Dr. Lazio said. “Just as current cosmological studies have both fascinated and surprised us, I anticipate that DALI will lead both to increased understanding of the Universe and unexpected discoveries.”

When asked about the program, NRL Senior Astronomer Dr. Kurt Weiler remarked: “Building telescopes on the Moon is clearly a long-term project, but I am very excited about us getting started on this proposal.”

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>