Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Purdue facility aims to improve NASA moon rocket engine

12.03.2008
Purdue University engineers are conducting experiments using a new hydrogen facility to help NASA create designs to improve the cooling efficiency and performance of the J-2X rocket engine, critical for future missions to Mars and the moon.

More efficient cooling improves performance and reduces the need for costly overhauls, said William Anderson, an associate professor in Purdue's School of Aeronautics and Astronautics.

The new hydrogen facility allows Purdue researchers to study fundamental processes in hydrogen-oxygen engines, such as the J-2X and the engine that will be used by astronauts during their descent to the moon.

In addition to its use as a fuel in these engines, liquid hydrogen serves as a coolant before entering the combustion chamber. The frigid liquid hydrogen, which is about 420 degrees below zero Fahrenheit, circulates through channels in a cooling jacket surrounding the combustor, absorbing heat and raising its temperature before it is injected into the chamber.

The Purdue research focuses on accurately measuring the heat flux, which is caused by differences in temperature between the hot combustion gases and the cooled walls of the combustor. Combusted gases in the rocket's chamber reach 6,000 degrees Fahrenheit, which is more than three times higher than the melting temperature of the combustor's copper wall.

The measurements are used to improve detailed computational models of how propellants mix inside the combustor. The work also aims at better understanding the behavior of coolant inside channels surrounding the combustor.

"Extreme heating takes place in specific locations, and this localized heating tends to limit the combustor life," Anderson said. "Without knowing exactly how the overheating occurs, we tend to overcool the whole combustor. This limits how much propellant energy can be converted into useful thrust."

High-purity hydrogen is provided by the new hydrogen facility, located at Purdue's Maurice J. Zucrow Laboratories.

The hydrogen source is made possible by an intricate feed system designed by Timothee Pourpoint, a senior research scientist in the School of Aeronautics and Astronautics who is in charge of the hydrogen facility, which became operational in 2007. Another major focus of the facility is work funded by General Motors Corp. to develop a hydrogen-storage system for future cars.

Hydrogen gas not used for rocket research is piped 1,000 feet away to the Hydrogen Systems Laboratory for the General Motors hydrogen research.

"Because of the new facility, we are able to conduct research on a scale that is directly comparable to the J-2X," Anderson said. "That's because the facility allows significant hydrogen-flow rates at pressures exceeding 5,000 pounds per square inch."

It is critical to measure the heat flux because engineers need to know how much liquid hydrogen or liquid oxygen to flow through the outside of the engine in order to keep it cool, said Lloyd Droppers, a doctoral student in Purdue's School of Aeronautics and Astronautics.

Purdue researchers measured how much the heat flux varied at different points on the inner wall of the combustion chamber when propellant was being fed into the chamber with a carefully designed set of injectors.

"Until now, these detailed measurements were made using only one injector element, whereas this experiment contains seven elements." Anderson said. "This is important because having seven elements allows you to get precise spatial measurements to tell you how the heat flux changes due to interactions between elements and how it changes relative to the location of the injector elements."

The J-2X rocket is an upgraded version of the J-2 rocket, which was part of the Saturn V vehicles that carried astronauts to the moon in the Apollo missions. The J-2X is part of the Ares rocket that will be used to launch the Orion spacecraft to the International Space Station after the end of the Space Shuttle program in 2010. The rocket also will be needed to carry materials into Earth orbit for retrieval by other spacecraft bound for the moon and Mars.

Measurements taken in the experiments will help engineers more precisely size the cooling jacket for optimal cooling in the J-2X. Better cooling could be achieved by changing the size of the tubing or channels to match areas of highest and lowest heating.

Better computational models would enable engineers to see how a design would perform before building the engine, saving time and money.

"It costs millions of dollars to build these engines, and additional millions of dollars to test them," Anderson said. "So before building a rocket engine, you want to have a good idea of how it's going to perform."

Doctoral student Reuben Schuff is leading work ultimately aimed at improving designs for the cooling channels.

Heat is controlled in such rockets with a method called "regenerative cooling," so called because the fuel serves as a coolant before it is injected into the combustion chamber.

The research is being funded through NASA's Constellation University Institute Program, which supports rocket research at universities around the nation. Missions using the J-2X rocket are planned for the next decade.

The new hydrogen facility is funded primarily by General Motors and NASA, with additional support from the Indiana 21st Century Research and Technology Fund and Purdue's Energy Center in Discovery Park.

Research findings were detailed in two research papers presented last summer during the American Institute of Aeronautics and Astronautics' joint propulsion conference in Cincinnati.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: William Anderson, (765) 496-2658, wanderso@purdue.edu
Timothee Pourpoint, (765) (494) 1541, timothee@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>