Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists and engineers search for new dimension

12.03.2008
The universe as we currently know it is made up of three dimensions of space and one of time, but researchers in the Department of Physics and the Department of Electrical and Computer Engineering at Virginia Tech are exploring the possibility of an extra dimension.

Sound like an episode from the “Twilight Zone"” Almost, but not quite; according to John Simonetti, associate professor of physics in the College of Science and Michael Kavic, graduate student and one of the investigators on the project.

“The idea we’re exploring is that the universe has an imperceptibly small dimension (about one billionth of a nanometer) in addition to the four that we know currently,” Kavic said. “This extra dimension would be curled up, in a state similar to that of the entire universe at the time of the Big Bang.”

The group is looking for small primordial black holes that, when they explode, may produce a radio pulse that could be detected here on Earth. These black holes are called primordial because they were created a fraction of a second after the beginning of the universe.

Black holes are expected to evaporate over time, losing mass and therefore shrinking. A black hole larger than the extra dimension would wrap around it like a thick rubber band wrapped around a hose. As a black hole shrinks down to the size of the extra dimension, it would be stretched so thin it would snap, causing an explosion.

The explosion could produce a radio pulse. Under a National Science Foundation grant, the Virginia Tech group is preparing to set up an Eight-meter-wavelength Transient Array radio telescope in Montgomery County to search the sky for these radio pulses from explosions up to 300 light years away. They have a similar telescope in southwestern North Carolina that has been looking for events for several months.

“We have a number of things in mind that have been predicted to produce radio pulses, which have not been seen,” Simonetti said. “One of them is a primordial black hole explosion.”

“Basically we’re looking for any exotic, high-energy explosion that would produce radio waves,” Simonetti said. He said the establishment of the second radio telescope would help the two telescopes validate one another.

“If a pulse is detected in both instruments at about the same time, that’s a good indication we’re talking about something real as opposed to a pulse from manmade interference,” Simonetti said.

Why search for extra dimensions" One reason has to do with string theory, an area of physics that postulates that the fundamental building blocks of the universe are small strings of matter that oscillate much like a guitar string, producing various harmonics.

“String theory requires extra dimensions to be a consistent theory,” Kavic said. “String theory suggests a minimum of 10 dimensions, but we’re only considering models with one extra dimension.”

Some theorists believe the Large Hadron Collider, a giant particle accelerator being constructed near Geneva, Switzerland, might be able to detect an extra dimension. The Virginia Tech group hopes to detect them via radio astronomy, a much less elaborate and costly endeavor.

The Virginia Tech research team plans to run the search for at least five years. Others involved in the project include physics graduate student Sean Cutchin; College of Engineering professors Steven Ellingson and Cameron Patterson; and graduate students Brian Martin, Kshitija Deshpande, and Mahmud Harun.

“If we had evidence there is an extra dimension, it would really revolutionize how we think about space and time,” Kavic said. “This would be a very exciting discovery.”

Catherine Doss | EurekAlert!
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>