New NIST detector can 'see' single neutrons over broad range

The new detector, described at the March Meeting of the American Physical Society* by Charles Clark, a Fellow of the Joint Quantum Institute of NIST and the University of Maryland, promises to improve existing neutron measurements and enable tests of new phenomena beyond the Standard Model, the basic framework of particle physics.

The prototype laboratory device is based on a process first observed by the research team: the emission of light from hydrogen atoms produced when neutrons are absorbed by helium-3 atoms (3He). Lyman alpha light, discovered by Harvard physicist Theodore Lyman in 1906, results from the jump between the two lowest-energy states of the hydrogen atom. Although it is the brightest light emitted by the sun and is one of the most abundant forms of light in the universe, Lyman alpha is invisible to the eye because it lies in the far ultraviolet region of the optical spectrum. It is strongly absorbed by most substances and can travel through only about a millimeter of air.

Helium gas, however, does not absorb Lyman alpha light. When a neutron is absorbed by a helium-3 atom, one atom of hydrogen and one atom of tritium (a heavy form of hydrogen) are produced. These atoms fly apart at high speeds, can be excited by collisions with surrounding helium gas, and subsequently emit Lyman alpha light. This light is recorded by the new device, known as the Lyman alpha neutron detector (LAND).

Using an ultracold neutron beam at the NIST Center for Neutron Research, the research team has discovered that Lyman alpha light is generated with surprisingly high efficiency: about 40 photons are generated per neutron for helium gas at atmospheric pressure. According to Alan Thompson, neutron expert on the team, “This device thus has the potential to detect both single neutrons and large numbers of neutrons, which is very difficult to do with present neutron detectors based on electrical discharges.”

The use of an optical means of detection, rather than an electronic one, also offers the prospect of at least a hundredfold improvement in neutron detectors’ dynamic range (the spread in recordable neutron intensity from faint to bright). This stems from the fact that optical detectors respond more quickly than electronic detectors (which suffer from longer periods of inactivity known as “dead time.”)

With further development, this new method can potentially lead to better measurements at existing neutron facilities (for example, neutron diffraction instruments at the NIST Center for Neutron Research) and enable new tests of physics beyond the Standard Model. Measurements at NIST of a property in neutrons known as the electric dipole moment and more precise measurements of the neutron lifetime are planned.

Media Contact

Ben Stein EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors