Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real and virtual pendulums swing as 1 in mixed reality state

12.03.2008
Using a virtual pendulum and its real-world counterpart, scientists at the University of Illinois have created the first mixed reality state in a physical system. Through bidirectional instantaneous coupling, each pendulum “sensed” the other, their motions became correlated, and the two began swinging as one.

“In a mixed reality state there is no clear boundary between the real system and the virtual system,” said U. of I. physicist Alfred Hubler. “The line blurs between what’s real and what isn’t.”

In the experiment, Hubler and graduate student Vadas Gintautas connected a mechanical pendulum to a virtual one that moved under time-tested equations of motion. The researchers sent data about the real pendulum to the virtual one, and sent information about the virtual pendulum to a motor that influenced motion of the real pendulum.

When the lengths of the two pendulums were dissimilar, they remained in a dual reality state of uncorrelated motion and both soon came to rest.

When the lengths of the pendulums were similar, however, they “suddenly noticed each other, synchronized their motions, and danced together indefinitely,” said Hubler, who also is affiliated with the U. of I. Center for Complex Systems Research.

In this mixed reality state, the real pendulum and the virtual pendulum moved together as one.

While mechanical pendulums have been coupled with springs to create correlated motion in the past, this is the first time a mechanical system has been coupled with a virtual system. The resulting mixed reality state was made possible by the computational speed of current computer technology.

“Computers are now fast enough that we can detect the position of the real pendulum, compute the dynamics of the virtual pendulum, and compute appropriate feedback to the real pendulum, all in real time,” said Hubler, who will describe the experiment and discuss potential ramifications at the annual meeting of the American Physical Society, to be held in New Orleans, March 10-14.

From flight simulators to video games, virtual worlds are becoming more and more accurate depictions of the real world. There could come a point, a phase transition, where the boundary between reality and virtual reality disappears, Hubler said. And that could present problems.

For example, no longer able to determine what is real and what is not, an individual might become defensive in the real world because of a threat perceived in a virtual world.

A better understanding of this potential phase transition is needed, Hubler said. “As virtual systems continue to improve and better approximate real ones, even weak couplings – like those between real and virtual pendulums – could induce sudden transitions to mixed reality states.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>