Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real and virtual pendulums swing as 1 in mixed reality state

12.03.2008
Using a virtual pendulum and its real-world counterpart, scientists at the University of Illinois have created the first mixed reality state in a physical system. Through bidirectional instantaneous coupling, each pendulum “sensed” the other, their motions became correlated, and the two began swinging as one.

“In a mixed reality state there is no clear boundary between the real system and the virtual system,” said U. of I. physicist Alfred Hubler. “The line blurs between what’s real and what isn’t.”

In the experiment, Hubler and graduate student Vadas Gintautas connected a mechanical pendulum to a virtual one that moved under time-tested equations of motion. The researchers sent data about the real pendulum to the virtual one, and sent information about the virtual pendulum to a motor that influenced motion of the real pendulum.

When the lengths of the two pendulums were dissimilar, they remained in a dual reality state of uncorrelated motion and both soon came to rest.

When the lengths of the pendulums were similar, however, they “suddenly noticed each other, synchronized their motions, and danced together indefinitely,” said Hubler, who also is affiliated with the U. of I. Center for Complex Systems Research.

In this mixed reality state, the real pendulum and the virtual pendulum moved together as one.

While mechanical pendulums have been coupled with springs to create correlated motion in the past, this is the first time a mechanical system has been coupled with a virtual system. The resulting mixed reality state was made possible by the computational speed of current computer technology.

“Computers are now fast enough that we can detect the position of the real pendulum, compute the dynamics of the virtual pendulum, and compute appropriate feedback to the real pendulum, all in real time,” said Hubler, who will describe the experiment and discuss potential ramifications at the annual meeting of the American Physical Society, to be held in New Orleans, March 10-14.

From flight simulators to video games, virtual worlds are becoming more and more accurate depictions of the real world. There could come a point, a phase transition, where the boundary between reality and virtual reality disappears, Hubler said. And that could present problems.

For example, no longer able to determine what is real and what is not, an individual might become defensive in the real world because of a threat perceived in a virtual world.

A better understanding of this potential phase transition is needed, Hubler said. “As virtual systems continue to improve and better approximate real ones, even weak couplings – like those between real and virtual pendulums – could induce sudden transitions to mixed reality states.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>