Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stunt doubles: Ultracold atoms could replicate the electron 'jitterbug'

11.03.2008
Ultracold atoms moving through a carefully designed arrangement of laser beams will jiggle slightly as they go, two NIST scientists have predicted.* If observed, this never-before-seen “jitterbug” motion would shed light on a little-known oddity of quantum mechanics arising from Paul Dirac’s 80-year-old theory of the electron.

Dirac’s theory, which successfully married the principles of Einstein’s relativity to the quantum property of electrons known as spin, famously predicted that the electron must have an antiparticle, subsequently discovered and named the positron. More enigmatically, the Dirac theory indicates that an isolated electron moving through empty space will vibrate back and forth. But this shaking—named Zitterbewegung from the German for ‘trembling motion’—is so rapid and so tiny in amplitude that it has never been directly observed.

Jay Vaishnav and Charles Clark of the Joint Quantum Institute, a partnership of NIST and the University of Maryland, have devised an experimental arrangement in which atoms are made to precisely mimic the behavior of electrons in Dirac’s theory. The atoms will show Zitterbewegung—but with vibrations that are slow enough and large enough to be detected.

Vaishnav and Clark’s proposal begins with an atom—rubidium-87 is an example—that has a ‘tripod’ arrangement of electron energy levels, consisting of one higher energy level above three equal-energy lower levels. Suppose, say the researchers, that such atoms are placed in a region crisscrossed by lasers at specific frequencies. Two pairs of laser beams face each other, creating a pattern of standing waves, while a third laser beam is set perpendicular to the other two.

Given the proper frequencies of light, a perfectly stationary “tripod” atom at the intersection will have the energy of its upper state and one of the three lower states slightly changed. To a moving atom, however, the electromagnetic field will look a little different, and in that case the energies of the other two lower states also change slightly.

Remarkably, those two states, moving in this particular arrangement of laser light, are governed by an equation that’s exactly analogous to the Dirac equation for the two spin states of an electron moving in empty space. In particular, as the atom moves, it flips back and forth between the two states, and that flipping is accompanied by a jiggling back and forth of the atom’s position—a version of Zitterbewegung with a frequency measured in megahertz, a hundred trillion times slower than the vibration of a free electron.

Other arrangements of lasers and atoms have been used to cleanly simulate a variety of quantum systems, says Vaishnav. Examples includes recent studies of the mechanisms of quantum magnetism and high-temperature superconductivity.** What’s unusual about this new proposal, she adds, is that it offers a simulation of a fundamental elementary particle in free space and may offer access to an aspect of electron behavior that would otherwise remain beyond observational scrutiny.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>