Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic 'astronauts' to go back in orbit

11.03.2008
Experimental payload aboard space shuttle Endeavor to continue studies on the ability of germs to cause disease

When space shuttle Endeavor blasts off on March 11, some tiny ‘astronauts’ will piggyback onboard an experimental payload from Arizona State University’s Biodesign Institute.

The new experiment, called “Microbial Drug Resistance Virulence” is part of the STS-123 space shuttle Endeavor mission. It will continue the research studies of Cheryl Nickerson, PhD, project leader and scientist in the institute’s Center for Infectious Diseases and Vaccinology. Nickerson has been at the forefront on studying the risks of germs associated with spaceflight to the health and well being of the crew.

“Wherever people go, germs will follow,” said Nickerson, who is also an associate professor at ASU’s School of Life Sciences. Last fall, she completed a multi-institutional study that showed for the first time that microbes could be affected by spaceflight, making them more infectious pathogens. The results were from a payload flown onboard space shuttle Atlantis in 2006.

Spaceflight not only altered bacterial gene expression but also increased the ability of these organisms to cause disease, or virulence, and did so in novel ways. Compared to identical bacteria that remained on earth, the space-traveling Salmonella, a leading cause of food-borne illness, had changed expression of 167 genes. In addition, bacteria that were flown in space were almost three times as likely to cause disease when compared with control bacteria grown on the ground.

Now, her research team, which includes James Wilson, PhD, Laura Quick, Richard Davis, Emily Richter, Aurelie Crabbe and Shameema Sarker, will have an extraordinarily rare opportunity to fly a repeat experiment of their NASA payload to confirm their earlier results.

“We are very fortunate to get a follow up flight opportunity, because in spaceflight, you only get one shot for everything to go just right,” said Nickerson. “We saw unique bacterial responses in flight and these responses are giving us new information about how Salmonella causes disease. NASA is giving us the opportunity to independently replicate the virulence studies of Salmonella typhimurium from our last shuttle experiment and to do a follow-up experiment to test our hypothesis about new ways this bacteria causes disease in this unique environment.”

In the new experimental wrinkle, the team will test a hypothesis that may lead to decreasing or preventing the risk for infectious diseases to astronauts. The experiment will determine if the modulation of different ion (mineral) concentrations may be used as a novel way to counteract or block the spaceflight-associated increase in the disease-causing potential that was seen in Salmonella.

In addition, the project will support three other independent investigators to determine the effect of spaceflight on the gene expression and virulence potential of other model microorganisms, including: Dave Niesel, University of Texas Medical Branch at Galveston, Streptococcus pneumoniae; Mike McGinnis, University of Texas Medical Branch at Galveston Saccharomyces cerevisiae; and Barry Pyle, Montana State University, Pseudomonas aeruginosa.

These microorganisms were chosen because they are well studied organisms that have been, or have the potential to be, isolated from the space shuttle, Mir space station, International Space Station, or its crew, or have been shown to exhibit altered virulence in response to spaceflight. These organisms are all important human pathogens that cause a significant amount of human morbidity and mortality on Earth as well.

“We now have a wide variety of supportive evidence that the unique low fluid shear culture environment the bacteria encounter in space is relevant to what pathogens encounter in our body, including during Salmonella infection in the gut, and there may be a common regulatory theme governing the microbial responses,” said Nickerson. “But to prove that, we need to fly these common bugs together with the same hardware on the same flight so that everyone is tested under the same conditions.

The investigators believe that information gained from these studies will prove beneficial in assessing microbiological risks and options for reducing those risks during crew missions. When taken together, these studies will ultimately provide significant insights into the molecular basis of microbial virulence. Once specific molecular targets are identified, there is the potential for vaccine development and other novel strategies for prevention and treatment of disease caused by these microbes both on the ground and during spaceflight.

“We are learning new things about how Salmonella is causing disease,” said Nickerson. “There is compelling evidence that the unique environment of spaceflight provides important insight into a variety of fundamental human health issues with tremendous potential for the commercial development of novel enabling technologies to enhance human health here on Earth," said Nickerson.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>