Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microscopic 'astronauts' to go back in orbit

Experimental payload aboard space shuttle Endeavor to continue studies on the ability of germs to cause disease

When space shuttle Endeavor blasts off on March 11, some tiny ‘astronauts’ will piggyback onboard an experimental payload from Arizona State University’s Biodesign Institute.

The new experiment, called “Microbial Drug Resistance Virulence” is part of the STS-123 space shuttle Endeavor mission. It will continue the research studies of Cheryl Nickerson, PhD, project leader and scientist in the institute’s Center for Infectious Diseases and Vaccinology. Nickerson has been at the forefront on studying the risks of germs associated with spaceflight to the health and well being of the crew.

“Wherever people go, germs will follow,” said Nickerson, who is also an associate professor at ASU’s School of Life Sciences. Last fall, she completed a multi-institutional study that showed for the first time that microbes could be affected by spaceflight, making them more infectious pathogens. The results were from a payload flown onboard space shuttle Atlantis in 2006.

Spaceflight not only altered bacterial gene expression but also increased the ability of these organisms to cause disease, or virulence, and did so in novel ways. Compared to identical bacteria that remained on earth, the space-traveling Salmonella, a leading cause of food-borne illness, had changed expression of 167 genes. In addition, bacteria that were flown in space were almost three times as likely to cause disease when compared with control bacteria grown on the ground.

Now, her research team, which includes James Wilson, PhD, Laura Quick, Richard Davis, Emily Richter, Aurelie Crabbe and Shameema Sarker, will have an extraordinarily rare opportunity to fly a repeat experiment of their NASA payload to confirm their earlier results.

“We are very fortunate to get a follow up flight opportunity, because in spaceflight, you only get one shot for everything to go just right,” said Nickerson. “We saw unique bacterial responses in flight and these responses are giving us new information about how Salmonella causes disease. NASA is giving us the opportunity to independently replicate the virulence studies of Salmonella typhimurium from our last shuttle experiment and to do a follow-up experiment to test our hypothesis about new ways this bacteria causes disease in this unique environment.”

In the new experimental wrinkle, the team will test a hypothesis that may lead to decreasing or preventing the risk for infectious diseases to astronauts. The experiment will determine if the modulation of different ion (mineral) concentrations may be used as a novel way to counteract or block the spaceflight-associated increase in the disease-causing potential that was seen in Salmonella.

In addition, the project will support three other independent investigators to determine the effect of spaceflight on the gene expression and virulence potential of other model microorganisms, including: Dave Niesel, University of Texas Medical Branch at Galveston, Streptococcus pneumoniae; Mike McGinnis, University of Texas Medical Branch at Galveston Saccharomyces cerevisiae; and Barry Pyle, Montana State University, Pseudomonas aeruginosa.

These microorganisms were chosen because they are well studied organisms that have been, or have the potential to be, isolated from the space shuttle, Mir space station, International Space Station, or its crew, or have been shown to exhibit altered virulence in response to spaceflight. These organisms are all important human pathogens that cause a significant amount of human morbidity and mortality on Earth as well.

“We now have a wide variety of supportive evidence that the unique low fluid shear culture environment the bacteria encounter in space is relevant to what pathogens encounter in our body, including during Salmonella infection in the gut, and there may be a common regulatory theme governing the microbial responses,” said Nickerson. “But to prove that, we need to fly these common bugs together with the same hardware on the same flight so that everyone is tested under the same conditions.

The investigators believe that information gained from these studies will prove beneficial in assessing microbiological risks and options for reducing those risks during crew missions. When taken together, these studies will ultimately provide significant insights into the molecular basis of microbial virulence. Once specific molecular targets are identified, there is the potential for vaccine development and other novel strategies for prevention and treatment of disease caused by these microbes both on the ground and during spaceflight.

“We are learning new things about how Salmonella is causing disease,” said Nickerson. “There is compelling evidence that the unique environment of spaceflight provides important insight into a variety of fundamental human health issues with tremendous potential for the commercial development of novel enabling technologies to enhance human health here on Earth," said Nickerson.

Joe Caspermeyer | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>