Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement technique probes surface structure of gold nanocrystals

11.03.2008
In the hands of jewelers, gold can be fashioned into rings and pendants of long-lasting beauty. But, when reduced in size to nanocrystals containing a few thousand atoms, this noble metal is a surprisingly good catalyst.

Finding the key to gold’s chemical reactivity (or that of any metal nanocrystal) has been difficult, as few measurement techniques work at the nanoscale. Now, researchers at the University of Illinois have demonstrated a sensitive probe that can identify and characterize the atomic structure of gold and other nanocrystalline materials.

“Without the necessary structural information, our understanding of nanocrystals has been limited to models that often treat the surface of a nanocrystal as an extension of a bulk crystalline surface,” said Jian-Min (Jim) Zuo, a professor of materials science and engineering at the U. of I., and corresponding author of a paper to appear in the April issue of the journal Nature Materials, and posted on its Advanced Online Publication Web site.

“The striking difference we found between the surfaces of gold nanocrystals and bulk crystalline surfaces shows we need to re-evaluate our preconceptions about the nature of structural dynamics and the level of complexity that nanocrystals can embrace,” said Zuo, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the U. of I. campus.

Because chemical reactions primarily take place on surfaces, scientists need to know how atoms are arranged on those surfaces. While scanning probe microscopy works for flat surfaces of bulk crystals, a different technique is required to study the surfaces of nanocrystals.

In their study, Zuo and colleagues used a technique they developed called nano-area coherent electron diffraction.

The technique works by illuminating a single gold nanocrystal (about 3 nanometers in diameter and containing close to 1,000 atoms) with a coherent electron beam about 40 nanometers in diameter.

The electron beam is scattered by the atoms in the nanocrystal, resulting in a complicated diffraction pattern made of speckles – similar to what is seen when a laser beam is reflected by a surface. When deciphered, the diffraction pattern describes the structural arrangement and behavior of the atoms, and the number and lengths of chemical bonds in the nanocrystal.

“Chemical force depends upon the number of chemical bonds present, so atoms on the surface, which don’t have as many neighbors as those inside a crystal, experience a different force,” Zuo said. “Our study also shows bond lengths on the surface of a gold nanocrystal are very different from bond lengths inside a bulk crystal.”

The differences come as a result of the surface atoms being contracted. The force behind the contraction is attributed to the smoothing of surface electron density and a resulting electrostatic force that pulls the surface ions toward the remaining bonds.

What is surprising, Zuo said, is that the contraction depends on the crystal facets. Atoms on facets with fewer bonds dominate, and lead to a much smaller contraction on other facets. This behavior is markedly different from bulk crystalline surfaces, and represents a new pattern of structural dynamics for nanocrystalline materials.

“Characterizing small nanostructures and their surfaces is so essential for understanding the special properties of nanomaterials,” Zuo said. “Nano-area coherent electron diffraction makes it possible for us to probe the surfaces of individual nanocrystals and examine their structure and size-dependent catalytic activity.”

The work is part of lead author Weijie Huang’s doctoral thesis. Other co-authors of the paper are graduate students Laurent Menard and Jing Tao, undergraduate student Ruoshi Sun, and chemistry professor Ralph Nuzzo.

The U.S. Department of Energy and the National Science Foundation funded the work.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/08/0310nanocrystal.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>