Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement technique probes surface structure of gold nanocrystals

11.03.2008
In the hands of jewelers, gold can be fashioned into rings and pendants of long-lasting beauty. But, when reduced in size to nanocrystals containing a few thousand atoms, this noble metal is a surprisingly good catalyst.

Finding the key to gold’s chemical reactivity (or that of any metal nanocrystal) has been difficult, as few measurement techniques work at the nanoscale. Now, researchers at the University of Illinois have demonstrated a sensitive probe that can identify and characterize the atomic structure of gold and other nanocrystalline materials.

“Without the necessary structural information, our understanding of nanocrystals has been limited to models that often treat the surface of a nanocrystal as an extension of a bulk crystalline surface,” said Jian-Min (Jim) Zuo, a professor of materials science and engineering at the U. of I., and corresponding author of a paper to appear in the April issue of the journal Nature Materials, and posted on its Advanced Online Publication Web site.

“The striking difference we found between the surfaces of gold nanocrystals and bulk crystalline surfaces shows we need to re-evaluate our preconceptions about the nature of structural dynamics and the level of complexity that nanocrystals can embrace,” said Zuo, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the U. of I. campus.

Because chemical reactions primarily take place on surfaces, scientists need to know how atoms are arranged on those surfaces. While scanning probe microscopy works for flat surfaces of bulk crystals, a different technique is required to study the surfaces of nanocrystals.

In their study, Zuo and colleagues used a technique they developed called nano-area coherent electron diffraction.

The technique works by illuminating a single gold nanocrystal (about 3 nanometers in diameter and containing close to 1,000 atoms) with a coherent electron beam about 40 nanometers in diameter.

The electron beam is scattered by the atoms in the nanocrystal, resulting in a complicated diffraction pattern made of speckles – similar to what is seen when a laser beam is reflected by a surface. When deciphered, the diffraction pattern describes the structural arrangement and behavior of the atoms, and the number and lengths of chemical bonds in the nanocrystal.

“Chemical force depends upon the number of chemical bonds present, so atoms on the surface, which don’t have as many neighbors as those inside a crystal, experience a different force,” Zuo said. “Our study also shows bond lengths on the surface of a gold nanocrystal are very different from bond lengths inside a bulk crystal.”

The differences come as a result of the surface atoms being contracted. The force behind the contraction is attributed to the smoothing of surface electron density and a resulting electrostatic force that pulls the surface ions toward the remaining bonds.

What is surprising, Zuo said, is that the contraction depends on the crystal facets. Atoms on facets with fewer bonds dominate, and lead to a much smaller contraction on other facets. This behavior is markedly different from bulk crystalline surfaces, and represents a new pattern of structural dynamics for nanocrystalline materials.

“Characterizing small nanostructures and their surfaces is so essential for understanding the special properties of nanomaterials,” Zuo said. “Nano-area coherent electron diffraction makes it possible for us to probe the surfaces of individual nanocrystals and examine their structure and size-dependent catalytic activity.”

The work is part of lead author Weijie Huang’s doctoral thesis. Other co-authors of the paper are graduate students Laurent Menard and Jing Tao, undergraduate student Ruoshi Sun, and chemistry professor Ralph Nuzzo.

The U.S. Department of Energy and the National Science Foundation funded the work.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/08/0310nanocrystal.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>