Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe launches its first re-supply ship – Jules Verne ATV – to the ISS

10.03.2008
Jules Verne, the first of the European Space Agency’s Automated Transfer Vehicles (ATV), a new series of autonomous spaceships designed to re-supply and re-boost the International Space Station (ISS), was successfully launched into low Earth orbit by an Ariane 5 vehicle this morning. During the coming weeks, it will manoeuvre in order to rendezvous and eventually dock with the ISS to deliver cargo, propellant, water and oxygen to the orbital outpost.

Lift-off occurred at 05:03 CET (01:03 local) from the Guiana Space Centre, Europe’s spaceport in Kourou, French Guiana. This flight required a new version of Europe’s workhorse launcher, the Ariane 5ES, specially adapted to the task of lofting the nearly 20-tonne vehicle – more than twice as heavy as the previous largest Ariane 5 payload – to a low circular orbit inclined at 51.6 degrees relative to the Equator and equipped with an upper stage with re-ignition capabilities.

The unusual launch trajectory required the deployment of two new telemetry tracking stations, one on a ship in the Atlantic Ocean and one on the Azores Islands. The Ariane 5 upper stage performed an initial 8-minute burn over the Atlantic and entered a 45-minute coast phase, flying over Europe and Asia before reigniting for a 40-second circularisation burn over Australia. Separation of Jules Verne ATV occurred at 06:09 CET (02:09 local) and was monitored by a ground station located in New Zealand.

The most complex European spacecraft ever

Jules Verne ATV is now circling the Earth in the same orbital plane as the ISS but at an altitude of only 260 km, compared to 345 km for the Station. The vehicle is under constant monitoring by the dedicated ATV Control Centre in Toulouse, France. Located within the premises of the French Space Agency CNES, the ATV Control Centre will ensure flight control throughout the mission in coordination with the ISS mission control centres in Moscow and Houston. After having demonstrated safety manoeuvres in free flight, the ATV will perform orbital ‘phasing’ manoeuvres in order to rendezvous with the ISS for a first docking slot scheduled for 3 April after the departure of NASA’s Space Shuttle Endeavour.

Named after the famous French 19th century visionary and author, the Jules Verne ATV is the largest and most sophisticated spacecraft ever developed in Europe, combining the functions of an autonomous free-flying platform, a manoeuvrable space vehicle and a space station module. About 10 m high with a diameter of 4.5 m, it weighed 19,357 kg at launch. It incorporates a 45-m3 pressurised module, derived from the Columbus pressure shell, and a Russian-built docking system, similar to those used on Soyuz manned ferries and on the Progress re-supply ship. About three times larger than its Russian counterpart, it can also deliver about three times more cargo.

The ATV is also the very first spacecraft in the world designed to conduct automated docking in full compliance with the very tight safety constraints imposed by human spaceflight operations. It features high accuracy navigation systems and a flight software far more complex than that used on Ariane 5.

Another ESA contribution to ISS co-ownership

Decided by ESA in 1995 in order to pay for its contribution to the operational costs of the ISS, the ATV has been under development since 1998 by an industrial team led by Astrium Space Transportation and comprising more than 30 contractors from 10 European countries.

On this first ATV mission, Jules Verne will deliver 4.6 tonnes of payload to the ISS, including 1 150 kg of dry cargo, 856 kg of propellant for the Russian Zvezda module, 270 kg of drinking water and 21 kg of oxygen. On future ATV missions, the payload capacity will be increased to 7.4 tonnes.

About half of the payload onboard Jules Verne ATV is re-boost propellant, which will be used by its own propulsion system for periodic manoeuvres to increase the altitude of the ISS in order to compensate its natural decay caused by atmospheric drag.

Upon leaving, after four months spent docked to the ISS, Jules Verne ATV will carry away waste from the Station. It will then be de-orbited over the Southern Pacific Ocean and burn up in the atmosphere in a fully controlled manner.

Only the beginning

Beyond Jules Verne, ESA has already contracted industry to produce four more ATVs to be flown through to 2015.

With both ESA’s ATV and Russia’s Progress, the ISS will be able to rely on two independent servicing systems to ensure its operations after the retirement of the US space shuttle in 2010.

The Japanese HTV (H-II Transfer Vehicle) will also soon join the scene. This will be vital to ensure the system's overall robustness and reliability.

“Last month, with the docking of Columbus, Europe got its own flat in the ISS building, with the launch of the first ATV, we now have our own delivery truck” said Daniel Sacotte, ESA’s Director for Human Spaceflight, Microgravity and Exploration. “We have become co-owners of the ISS, now we are about to become fully- fledged partners in running it. With the ATV we will be servicing the ISS by delivering cargo and providing orbital reboost.”

“The launch of Jules Verne by Ariane 5 ES marks an important step on the way to ESA becoming an indispensable ISS partner with the ATV, the heaviest and most complex spacecraft ever built by ESA” said Jean-Jacques Dordain, ESA’s Director General. “This is the result of close cooperation between Member States, European industry, Arianespace, CNES, ESA staff and international partners. But the next steps of Jules Verne’s mission are as important when it comes to attaining the objective of automatic rendezvous and docking with the ISS, controlled from the ATV Control Centre in Toulouse. In meeting that objective, we will have made great strides in consolidating the role of ESA in the future international exploration of the solar system.”

Karina De Castris | alfa
Further information:
http://www.esa.int/esaCP/Pr_15_2008_p_EN.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>