Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics breakthrough much ado about 'nothing'

07.03.2008
University of Calgary team enhances understanding of the universe by capturing unique form of void

How do scientists store nothing? It may sound like the beginning of a bad joke, but the answer is causing a stir in the realm of quantum physics after two research teams, including one from the University of Calgary, have independently proven it’s possible to store a special kind of vacuum in a puff of gas and then retrieve it a split second later.

In our everyday life, light is completely gone when we turn it off. In the world of quantum physics, which governs microscopic particles, even the light that is turned off exhibits some noise. This noise brings about uncertainty that can cause trouble when trying to make extremely precise measurements.

Using crystals to manipulate laser light, researchers create a peculiar type of nothingness known as a “squeezed vacuum,” which under certain conditions, exhibits less noise than no light at all. A squeezed vacuum is employed in gravitation wave detection; it is also important in the booming field of quantum information technology, where it is used to carry information and to generate an even more mysterious quantum object, entangled light.

Building on the 2001 breakthrough of Harvard-Smithsonian scientists who slowed light down to a stop, teams of physicists from the U of C and the Tokyo Institute of Technology have independently demonstrated that a squeezed vacuum can be stored for some time in a collection of rubidium atoms and retrieved when needed. In work to be published in the March 7 advanced online edition of the leading physics journal Physical Review Letters, the physicists measured the noise of the retrieved light and found it to remain “squeezed” compared to no light at all.

“Memory for light has been a big challenge in physics for many years and I am very pleased we have been able to bring it one step further,” said Alexander Lvovsky, professor in the Department of Physics and Astronomy, Canada Research Chair and leader of the U of C’s Quantum Information Technology research group. “It is important not only for quantum computers, but may also provide new ways to make unbreakable codes for transmitting sensitive information”.

"I'm very impressed," physicist Alexander Kuzmich of the Georgia Institute of Technology in Atlanta told the American Association for the Advancement of Science’s ScienceNOW news service of the squeezed vacuum discovery. Kuzmich, who was able to store and retrieve a single photon in 2006, said the development could help create new types of quantum networks for ultra-secure information transmission and help spell out the boundary of the quantum realm. "It's a real technical achievement," he said.

Lvovsky’s team is continuing work on light storage and is now investigating the possibility of storing more complex forms of quantum light, such as entangled light, which has a wide range of applications for quantum computing and information exchange.

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>