Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun’s Corona is both hot and kinky

07.03.2008
Astrophysicists are having a heated debate over the wave structure of the Sun’s Corona - a debate which may one day influence solar weather forecasting and the theory behind fusion reactors.

The Sun’s core is about 6000 degrees C, but its outer layer, the Corona, which is filled with a strong magnetic field, is 200 to 300 times hotter.

Last year American scientists thought they had cracked this paradox with research showing how high-energy Alfvén wave structures could super-heat the Corona.

The astrophysicists said they could detect Alfvén waves within the Corona – waves that have a corkscrew motion along the magnetic field at supersonic speed.

They published their results in prestigious journal Science.

However, scientists at the University of Warwick say these are well known and earlier discovered magneto-acoustic kink waves. These, they say, are a better fit for the complex magnetic fields of the Sun’s outer layer.

They’ve published their results today in the Astrophysical Journal Letters.

Warwick astrophysicist Dr Tom Van Doorsselaere explains; “We interpret the data differently. They think they’re looking at an Alfvén wave, but in fact they are looking at Kink wave.

“Kink waves are a bending of the magnetic field, much alike the bending of the string, when playing the guitar.

“Moreover, because the scientists from Boulder Colorado identified the wrong kind of wave all of their subsequent calculations are out. And, sadly, it means the question of why the Corona is hot remains unanswered.”

Richard Fern | alfa
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>