Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA develops a smarter way to travel through space


As scientists demand more from space missions travelling to other worlds and beyond, traditional rocket technologies are beginning to show shortcomings. In response, ESA are helping to develop a new type of rocket engine, known as solar-electric propulsion, or more commonly, an ion engine, that can mark a whole new era of space exploration.

ESA are helping to develop a new type of rocket engine;; known as solar-electric propulsion;; or more commonly;; an ion engine;; that can open the door to a whole new era of space exploration. photo: ESA

Solar-electric propulsion is ESA`s new spacecraft engine. It does not burn fuel as chemical rockets do; instead the technique converts sunlight into electricity via solar panels and uses it to electrically charge heavy gas atoms, which accelerate from the spacecraft at high velocity. This drives the spacecraft forwards. In a chemical rocket, burning the fuel creates gas that is expelled relatively slowly compared to electric thrusters. However, in an ion engine, the gas is ejected at large velocities, which makes it generally much more efficient, so less fuel is required.

Such engines have long been the subject of science fiction; now ESA has helped turn them into science fact. A small ion engine is currently lifting ESA`s telecommunications satellite, Artemis, to its planned orbit around Earth and, early in 2003, SMART-1 will blast off from Kourou, French Guiana. Once in space, this small craft will use an ion engine to reach the Moon.

Ion engines are truly important because their high efficiency makes previously impossible missions achievable. In fact, SMART-1 will test a manoeuvring technique, using its ion engine and the gravitational pull of the Moon, which will be essential for ESA`s BepiColombo mission to Mercury, lifting off in 2012. Giuseppe Racca, project manager for SMART-1, explains, "With chemical propulsion you can only do a fly-by or go into a very elongated orbit around the planet. If you want to achieve a low Mercury orbit and really observe the planet, then you can only do that with electric propulsion."

As well as BepiColombo, solar-electric propulsion will be used for ESA`s Solar Orbiter mission, to be launched at the same time. This probe will use an ion engine to rise out of the plane of the Solar System and study the Sun at high latitudes.

Since they do not need to carry so much fuel, ion engines release room for more scientific instruments. As technology continues to get smaller, the size of instruments decreases and the overall size and mass of the spacecraft decreases, further increasing efficiency. Racca says, "Solar-electric propulsion opens up the way to explore the inner part of the Solar System because you have the Sun to power you."

Further away, however, where the Sun`s light is weaker, a new electricity source, such as a nuclear generator, would be needed. This is the next logical step for the technology, according to Racca. He says, "They could take us to the Kuiper belt and even farther away." The Kuiper belt extends beyond the planet Pluto and is a dream destination for many scientists because it contains comets that have been undisturbed since the formation of the Solar System. Beyond these comets is a mysterious realm of magnetic fields and rarefied gases known as interstellar space that astronomers would love to explore. Solar-electric propulsion would make such a mission possible because an ion engine can run almost constantly, so that eventually it outperforms any chemical rocket on such long flights.

"Electric propulsion as a whole, including solar and nuclear types, will really allow us to open a new era of Solar System exploration," concludes Racca.

Clovis De Matos | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>