Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA develops a smarter way to travel through space

11.06.2002


As scientists demand more from space missions travelling to other worlds and beyond, traditional rocket technologies are beginning to show shortcomings. In response, ESA are helping to develop a new type of rocket engine, known as solar-electric propulsion, or more commonly, an ion engine, that can mark a whole new era of space exploration.


ESA are helping to develop a new type of rocket engine;; known as solar-electric propulsion;; or more commonly;; an ion engine;; that can open the door to a whole new era of space exploration. photo: ESA



Solar-electric propulsion is ESA`s new spacecraft engine. It does not burn fuel as chemical rockets do; instead the technique converts sunlight into electricity via solar panels and uses it to electrically charge heavy gas atoms, which accelerate from the spacecraft at high velocity. This drives the spacecraft forwards. In a chemical rocket, burning the fuel creates gas that is expelled relatively slowly compared to electric thrusters. However, in an ion engine, the gas is ejected at large velocities, which makes it generally much more efficient, so less fuel is required.

Such engines have long been the subject of science fiction; now ESA has helped turn them into science fact. A small ion engine is currently lifting ESA`s telecommunications satellite, Artemis, to its planned orbit around Earth and, early in 2003, SMART-1 will blast off from Kourou, French Guiana. Once in space, this small craft will use an ion engine to reach the Moon.


Ion engines are truly important because their high efficiency makes previously impossible missions achievable. In fact, SMART-1 will test a manoeuvring technique, using its ion engine and the gravitational pull of the Moon, which will be essential for ESA`s BepiColombo mission to Mercury, lifting off in 2012. Giuseppe Racca, project manager for SMART-1, explains, "With chemical propulsion you can only do a fly-by or go into a very elongated orbit around the planet. If you want to achieve a low Mercury orbit and really observe the planet, then you can only do that with electric propulsion."

As well as BepiColombo, solar-electric propulsion will be used for ESA`s Solar Orbiter mission, to be launched at the same time. This probe will use an ion engine to rise out of the plane of the Solar System and study the Sun at high latitudes.

Since they do not need to carry so much fuel, ion engines release room for more scientific instruments. As technology continues to get smaller, the size of instruments decreases and the overall size and mass of the spacecraft decreases, further increasing efficiency. Racca says, "Solar-electric propulsion opens up the way to explore the inner part of the Solar System because you have the Sun to power you."

Further away, however, where the Sun`s light is weaker, a new electricity source, such as a nuclear generator, would be needed. This is the next logical step for the technology, according to Racca. He says, "They could take us to the Kuiper belt and even farther away." The Kuiper belt extends beyond the planet Pluto and is a dream destination for many scientists because it contains comets that have been undisturbed since the formation of the Solar System. Beyond these comets is a mysterious realm of magnetic fields and rarefied gases known as interstellar space that astronomers would love to explore. Solar-electric propulsion would make such a mission possible because an ion engine can run almost constantly, so that eventually it outperforms any chemical rocket on such long flights.

"Electric propulsion as a whole, including solar and nuclear types, will really allow us to open a new era of Solar System exploration," concludes Racca.

Clovis De Matos | alfa
Further information:
http://sci.esa.int/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>