Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars and Venus are surprisingly similar

06.03.2008
Using two ESA spacecraft, planetary scientists are watching the atmospheres of Mars and Venus being stripped away into space. The simultaneous observations by Mars Express and Venus Express give scientists the data they need to investigate the evolution of the two planets’ atmospheres.

Scientists call this work comparative planetology. Mars Express and Venus Express are so good at it because they carry very similar science instruments. In the case of the Analyser of Space Plasmas and Energetic Atoms (ASPERA), they are virtually identical. This allows scientists to make direct comparisons between the two planets.

The new results probe directly into the magnetic regions behind the planets, which are the predominant channels through which electrically-charged particles escape. They also present the first detection of whole atoms escaping from the atmosphere of Venus, and show that the rate of escape rose by ten times on Mars when a solar storm struck in December 2006.

By observing the current rates of loss of the two atmospheres, planetary scientists hope that they will be able to turn back the clock and understand what they were like in the past. “These results give us the potential to measure the evolution of planetary climates,” says David Brain, Supporting Investigator for plasma physics for Venus Express and Co-Investigator for ASPERA on Mars and Venus Express at the University of California, Berkeley.

The new observations show that, despite the differences in size and distance from the Sun, Mars and Venus are surprisingly similar. Both planets have beams of electrically charged particles flowing out of their atmospheres. The particles are being accelerated away by interactions with the solar wind, a constant stream of electrically charged particles released by the Sun.

At Earth, the solar wind does not directly interact with the atmosphere. It is diverted by Earth’s natural cloak of magnetism. Neither Mars nor Venus have appreciable magnetic fields generated inside the planet, so each planet’s atmosphere suffers the full impact of the solar wind.

Interestingly, this full-on interaction does create a weak magnetic field that drapes itself around each planet and stretches out behind the night-side in a long tail. Venus’s atmosphere is thick and dense, whereas that of Mars is light and tenuous. Despite the differences, the magnetometer instruments have discovered that the structure of the magnetic fields of both planets are alike.

“This is because the density of the ionosphere at 250 km altitude is surprisingly similar,” says Tielong Zhang, Principal Investigator for the Venus Express magnetometer instrument at Institut für Weltraumforschung (IWF), Österreiche Akademie der Wissenschaften, Austria. The ionosphere is the surrounding shell of electrically-charged particles created by the impact of sunlight on the planet’s upper atmosphere.

The proximity of Venus to the Sun does create an important difference, however. The solar wind thins out as it moves through space so the closer to the Sun it is encountered, the more concentrated is its force. This creates a stronger magnetic field, making the escaping atmospheric particles move collectively like a fluid.

At Mars, the weaker field means that the escaping particles act as individuals. “This is a fundamental difference between the two planets,” says Stas Barabash, ASPERA Principal Investigator on both Mars Express and Venus Express, Swedish Institute of Space Physics.

Another illuminating difference between Mars and Venus is that Mars displays strong small-scale magnetic fields locked into the crust of the planet. In some regions, these pockets protect the atmosphere, in others they actually help funnel the atmosphere into space.

The complexity of the different processes revealed at Venus and Mars means that planetary scientists do not yet have the full picture. “There will be many more results to come,” says Barabash.

There is a lot to do because there are many different mechanisms that may cause the atmospheric particles to escape. Untangling it all will take time. “The longer the spacecraft work together, the longer we can watch and see what really happens,” says Brain.

Håkan Svedhem | alfa
Further information:
http://www.esa.int/esaSC/SEMMAGK26DF_index_0.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>