Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last large piece of ATLAS detector lowered underground

04.03.2008
Brandeis scientists help launch the greatest physics experiment of all time

Today Brandeis researchers in the U.S. ATLAS collaboration joined colleagues around the world to celebrate a pivotal landmark in the construction of the Large Hadron Collider (LHC) – the lowering of the final piece of the ATLAS particle detector into the underground collision hall at CERN in Geneva, Switzerland.

Experiments conducted at this revolutionary LHC facility, poised to become the world’s most powerful particle accelerator, may help scientists unravel some of the deepest mysteries in particle physics. The U.S. branch of the collaboration (U.S. ATLAS), based out of the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, built and delivered several key elements of the ATLAS detector.

The last piece of ATLAS lowered into the ATLAS experimental cavern is one of two elements known as the small wheels. The two ATLAS small wheels, though little in comparison to the rest of the ATLAS detector, are each about 30 feet in diameter and weigh 100 tons. The wheels are covered with sensitive detectors that will be used to identify and measure the momentum of subatomic particles called muons that are created in collisions at the LHC. The entire detector system has an area equal to three football fields, consisting of 100 million independent electronic channels. As charged particles pass through a magnetic field created by superconducting magnets, this detector has the ability to accurately track them to the precision of the width of a human hair.

Over the last fourteen years, the Brandeis high-energy physics group has been heavily involved in the mechanical design and assembly of the small wheel, as well as the production of the muon measurement chambers and the alignment of the endcap muon system.

“We believe that muons are signatures of interesting events,” says Branadeis physicist James Bensinger. If enough muon-related events are detected, it’s entirely likely that high-energy particle physics could cross the threshold to a new era of understanding, perhaps moving closer to that obscure “theory of everything.”

“We’re proud of the teams involved in this international scientific endeavor - one of the largest collaborative efforts ever attempted in the physical sciences,” said Dennis Kovar, acting associate director for High Energy Physics in DOE’s Office of Science. “This technical landmark brings us a huge step closer to unveiling a new level of understanding of our universe.”

Of the almost 2,100 participants in the ATLAS collaboration, about 420 are U.S. physicists, engineers, and graduate students. Hailing from 38 universities and four national laboratories, these U.S. collaborators are supported by DOE and the National Science Foundation (NSF).

“This is a remarkable milestone in the complicated construction of the ATLAS detector,” said Joseph Dehmer, director of the Physics Division at the NSF. “The LHC is one of the most exciting physics experiments for this decade and beyond. We are impressed by the hundreds of U.S. university and national laboratory scientists who are working hard to make this extraordinary project a reality. We look forward to the groundbreaking results that are now just around the corner.”

Involving the work of 450 physicists from 48 institutions around the world, lowering this last small wheel marks the end of a decade of planning and construction of the muon spectrometer system.

“For me personally, this is the culmination of many years of work designing, planning, and installing the mechanical structure,” said Vincent Hedberg, who led the development of the small wheel support system. “For ATLAS as a whole, the last large detector is finally in place.”

Brookhaven National Laboratory led the development of the 32 muon detectors in the inner ring of the wheels, working with Stony Brook University, the University of Arizona, and the University of California, Irvine. In addition, numerous U.S. universities built the 64 precision muon chambers on the small wheels; these include: the University of Michigan, University of Washington, Seattle, and the Boston Muon Consortium, which involves Boston University, Brandeis University, Harvard University, the Massachusetts Institute of Technology, and Tufts University.

“These fragile detectors comprise the largest measuring device ever constructed for high-energy physics,” said George Mikenberg, ATLAS muon project leader.

Experiments at the LHC will allow physicists to take a big leap in their exploration of the universe. The ATLAS detector may help its scientists unravel some of the deepest mysteries in particle physics such as the origin of mass or the identification of dark matter. The ATLAS collaboration will now focus on commissioning the detector in preparation for the start-up of the LHC this summer.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu
http://www.bnl.gov/newsroom
http://www.atlas.ch/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>