Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An accident? Construction work? A bottleneck? No, just too much traffic.

04.03.2008
A new study from a Japanese research group explains why we’re occasionally caught in traffic jams for no visible reason. The real origin of traffic jams often has nothing to do with obvious obstructions such as accidents or construction work but is simply the result of there being too many cars on the road.

The research, published today, Tuesday, 4 March, in the New Journal of Physics, shows how model patterns, normally used to understand the movement of many-particle systems, have been applied to real-life moving traffic. The research shows that even tiny fluctuations in car-road density cause a chain reaction which can lead to a jam.

The research found that tiny fluctuations in speed, always existing when drivers want to keep appropriate headway space, have a cumulative effect. Once traffic reaches a critical density, the cumulative effect of gentle braking rushes back over drivers like a wave and leads to a standstill.

The researchers in Japan used a circular track with a circumference of 230m. They put 22 cars on the road and asked the drivers to go steadily at 30km/h around the track. While the flow was initially free, the effect of a driver altering his speed reverberated around the track and led to brief standstills.

Yuki Sugiyama, physicist from Nagoya University, said, “Although the emerging jam in our experiment is small, its behaviour is not different from large ones on highways. When a large number of vehicles, beyond the road capacity, are successively injected into the road, the density exceeds the critical value and the free flow state becomes unstable.”

The researchers will be advancing their research by using larger roads and more vehicles to further test their findings.

The research suggests that it might be possible to estimate critical density of roads, making it possible to build roads fit for the number of drivers needing use of it or, on for example toll roads, only allowing the right number of cars access to the road to stop mid-flow traffic jams.

Joe Winters | alfa
Further information:
http://stacks.iop.org/NJP/10/033001

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>