Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure field strength and density of ICF implosions

03.03.2008
Scientists have identified for the first time two distinctly different types of electromagnetic configurations in inertial confinement fusion implosions that have substantial effects on implosion dynamics and diagnosis.

In the most recent research, which appears in the Feb. 29 issue of the journal, Science, Ryan Rygg of Lawrence Livermore National Laboratory and colleagues from the Massachusetts Institute of Technology and the University of Rochester used radiography with a pulsed monoenergetic proton source to simultaneously measure field strength and area densities by looking at the energy lost by protons during the implosion.

Inertial confinement fusion (ICF) is a process where nuclear fusion reactions (which release copious amounts of energy) are initiated by heating and compressing a fuel target, typically in the form of a spherical shell containing a mixture of deuterium and tritium. Upon completion of the National Ignition Facility laser, fuel will be compressed a thousand-fold by rapid energy deposition onto the surface of a fuel target.

At the OMEGA laser in Rochester, the team blasted 36 laser beams that deposited 14 kilojoules of energy in a one nano-second pulse into ICF fast-ignition capsules. (A nanosecond is one billionth of a second). To observe the dynamics of the imploding capsules, Rygg radiographed the targets before and during implosion. Radiography typically uses X-rays to view unseen or hard-to-image objects, but radiography using protons is sensitive to different phenomena.

The radiographic images showed the presence of complex, filamentary magnetic fields, which permeate the field of view, while a coherent centrally directed electric field is seen near the capsule shell, which had imploded to half its initial radius.

“By measuring the evolution of this coherent electric field, we could potentially map capsule pressure dynamics throughout the implosion, which would be invaluable in assessing implosion performance,” Rygg said. “The striated fields may provide a snapshot of structures originally produced inside the critical surface at various times during the implosion, which would open the door for evaluating the entire implosion process.”

Ann Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>