Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty space and supernovae

03.03.2008
Interstellar space may be strewn with tiny whiskers of carbon, dimming the light of far-away objects. This discovery by scientists at the Carnegie Institution may have implications for the “dark energy” hypothesis, proposed a decade ago in part to explain the unexpected dimness of certain stellar explosions called Type1a supernovae.

Type1a supernovae are among the brightest objects in the universe. Astronomers use them as “standard candles” to gauge cosmological distances: brighter-appearing supernovae are closer, dimmer ones are farther away. In the late 1990s some astronomers noticed that some seemed too dim—too far away—to be explained by conventional theories of the universe’s expansion. This led to the hypothesis that the expansion was accelerating, pushed along by an unknown form of energy — dark energy.

In the current study, published in the February 29 issue of Science, Andrew Steele and Marc Fries of the Carnegie Institution’s Geophysical Laboratory report the discovery of an unusual new form of carbon in minerals within meteorites dating from the formation of the solar system. These “graphite whiskers” were likely produced from carbon-rich gas at high temperatures and were found within features called calcium-aluminum inclusions, which at around 4.5 billion years old are the oldest known solids in our solar system.

“During this time when the sun was young, the solar wind was very strong,” says Fries. “So graphite whiskers formed near the sun could have been blown into interstellar space. The same thing may have happened around other young stars as well.”

Graphite whiskers might also be produced and dispersed into space by supernovae explosions.

A thin interstellar haze of graphite whiskers spewed from stars and supernovae would affect how different wavelengths of light pass through space. It has been postulated that wavelengths in the near infrared would be particularly affected. It is the dimming of light from Type 1a supernovae at these wavelengths that first led researchers to think that the universe’s expansion was accelerating and that therefore a hitherto unknown force “dark energy”must exist. However, since the 1970s it has been postulated that graphite or other whisker-like materials could explain the observations. The presence of graphite whiskers in space has never been confirmed until this study.

With the discovery of graphite whiskers in the meteorite, researchers can test their properties against the cosmological models and astronomical observations.

“If graphite whiskers in space are absorbing supernovae’s light,” says Steele, “then this could affect measurements of the rate of the universe’s expansion. While we cannot comment further on the effects of whiskers on the dark energy hypothesis it is important to study the characteristics of this form of carbon carefully so we can understand its impact on dark energy models. We’ll then feed this data forward to the upcoming NASA and ESA (European Space Agency) missions that will look for the effects of dark energy.”

Andrew Steele | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>