Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum corkscrews from twisting electron waves

03.03.2008
RIKEN researchers have shown that electron beams, like light, can be twisted into vortices that have useful functions

Recently scientists discovered that light can be twisted like a corkscrew around its direction of travel. This unusual quantum feature allows photons to whirl around in a vortex, even when no external force is applied to the beam. Now researchers from the RIKEN Frontier Research System in Wako have shown that the same kind of vortices can be produced in beams of electrons1, promising novel applications.

“When a light or electron beam is twisted, waves at the central axis cancel each other out forming a dark core, like at the eye of a storm (Fig. 1),” says RIKEN scientist Franco Nori, also with the University of Michigan in the USA. His RIKEN collaborator Sergey Savel’ev, also at Loughborough University in the UK, adds: “As the photons or electrons spin around the axis, they carry orbital angular momentum that can rotate an electric dipole.”

To explain these properties, the researchers solved the Schrödinger equation of quantum mechanics for a twisting beam of electrons. This produced new dynamical equations that are highly analogous to those found for light. The similarities arise because the twisting angular momentum of the electrons interacts with their forward motion in the same way that intrinsic angular momentum (spin) interacts with the motion of photons, which is known as spin-orbit coupling.

The theory implies that vortices in electron beams have all the features of optical vortices. This reinforces the famous concept of wave-particle duality, which states that all particles have a wave associated with them. More importantly, it means that the useful applications of optical vortices could be replicated at much shorter wavelengths.

In practice, optical vortices can be made by passing a laser beam through a fork-shaped computer generated hologram. Electron-beam vortices could be produced in a similar fashion, using a thin crystal plate with a dislocation. Such vortices could power tiny nanomotors and nano-engines, or could be used in telecommunications by storing information in the optical vorticity, or the intensity of twisting. The vorticity is robust against perturbations, so this potential future technology could reduce the loss of information during optical communications.

Furthermore, electron vortices are predicted to cause a shift of the electron beam at right angles to an electric field. “The unique electron microscope developed by Akira Tonomura's group, also at RIKEN, could observe this unusual effect,” says Nori. “Such work would considerably expand the textbook analogy between matter and waves which Tonomura helped to establish in pioneering experiments.”

1. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Physical Review Letters 99, 190404 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/393/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>