Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum corkscrews from twisting electron waves

03.03.2008
RIKEN researchers have shown that electron beams, like light, can be twisted into vortices that have useful functions

Recently scientists discovered that light can be twisted like a corkscrew around its direction of travel. This unusual quantum feature allows photons to whirl around in a vortex, even when no external force is applied to the beam. Now researchers from the RIKEN Frontier Research System in Wako have shown that the same kind of vortices can be produced in beams of electrons1, promising novel applications.

“When a light or electron beam is twisted, waves at the central axis cancel each other out forming a dark core, like at the eye of a storm (Fig. 1),” says RIKEN scientist Franco Nori, also with the University of Michigan in the USA. His RIKEN collaborator Sergey Savel’ev, also at Loughborough University in the UK, adds: “As the photons or electrons spin around the axis, they carry orbital angular momentum that can rotate an electric dipole.”

To explain these properties, the researchers solved the Schrödinger equation of quantum mechanics for a twisting beam of electrons. This produced new dynamical equations that are highly analogous to those found for light. The similarities arise because the twisting angular momentum of the electrons interacts with their forward motion in the same way that intrinsic angular momentum (spin) interacts with the motion of photons, which is known as spin-orbit coupling.

The theory implies that vortices in electron beams have all the features of optical vortices. This reinforces the famous concept of wave-particle duality, which states that all particles have a wave associated with them. More importantly, it means that the useful applications of optical vortices could be replicated at much shorter wavelengths.

In practice, optical vortices can be made by passing a laser beam through a fork-shaped computer generated hologram. Electron-beam vortices could be produced in a similar fashion, using a thin crystal plate with a dislocation. Such vortices could power tiny nanomotors and nano-engines, or could be used in telecommunications by storing information in the optical vorticity, or the intensity of twisting. The vorticity is robust against perturbations, so this potential future technology could reduce the loss of information during optical communications.

Furthermore, electron vortices are predicted to cause a shift of the electron beam at right angles to an electric field. “The unique electron microscope developed by Akira Tonomura's group, also at RIKEN, could observe this unusual effect,” says Nori. “Such work would considerably expand the textbook analogy between matter and waves which Tonomura helped to establish in pioneering experiments.”

1. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Physical Review Letters 99, 190404 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/393/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>