Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum corkscrews from twisting electron waves

03.03.2008
RIKEN researchers have shown that electron beams, like light, can be twisted into vortices that have useful functions

Recently scientists discovered that light can be twisted like a corkscrew around its direction of travel. This unusual quantum feature allows photons to whirl around in a vortex, even when no external force is applied to the beam. Now researchers from the RIKEN Frontier Research System in Wako have shown that the same kind of vortices can be produced in beams of electrons1, promising novel applications.

“When a light or electron beam is twisted, waves at the central axis cancel each other out forming a dark core, like at the eye of a storm (Fig. 1),” says RIKEN scientist Franco Nori, also with the University of Michigan in the USA. His RIKEN collaborator Sergey Savel’ev, also at Loughborough University in the UK, adds: “As the photons or electrons spin around the axis, they carry orbital angular momentum that can rotate an electric dipole.”

To explain these properties, the researchers solved the Schrödinger equation of quantum mechanics for a twisting beam of electrons. This produced new dynamical equations that are highly analogous to those found for light. The similarities arise because the twisting angular momentum of the electrons interacts with their forward motion in the same way that intrinsic angular momentum (spin) interacts with the motion of photons, which is known as spin-orbit coupling.

The theory implies that vortices in electron beams have all the features of optical vortices. This reinforces the famous concept of wave-particle duality, which states that all particles have a wave associated with them. More importantly, it means that the useful applications of optical vortices could be replicated at much shorter wavelengths.

In practice, optical vortices can be made by passing a laser beam through a fork-shaped computer generated hologram. Electron-beam vortices could be produced in a similar fashion, using a thin crystal plate with a dislocation. Such vortices could power tiny nanomotors and nano-engines, or could be used in telecommunications by storing information in the optical vorticity, or the intensity of twisting. The vorticity is robust against perturbations, so this potential future technology could reduce the loss of information during optical communications.

Furthermore, electron vortices are predicted to cause a shift of the electron beam at right angles to an electric field. “The unique electron microscope developed by Akira Tonomura's group, also at RIKEN, could observe this unusual effect,” says Nori. “Such work would considerably expand the textbook analogy between matter and waves which Tonomura helped to establish in pioneering experiments.”

1. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Physical Review Letters 99, 190404 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/393/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>