Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Two-Faced' Particles Act Like Tiny Submarines in NC State Study

For the first time, researchers at North Carolina State University have demonstrated that microscopic "two-faced" spheres whose halves are physically or chemically different – so-called Janus particles – will move like stealthy submarines when an alternating electrical field is applied to liquid surrounding the particles.
A paper describing the research, published in the Feb. 8, 2008, edition of Physical Review Letters, advances knowledge about how potential "smart" materials – think of tiny engines or sensors – can move around and respond to changes in their environment. Janus particles could be used as microscopic mixers, molecular "shuttles," self-propelling microsensors or means of targeted drug delivery.

The researchers – Dr. Orlin Velev, associate professor of chemical and biomolecular engineering at NC State and lead author of the paper; Sumit Gangwal, an NC State graduate student; Dr. Olivier Cayre, a post-doctoral researcher in Velev's lab; and Dr. Martin Bazant from Massachusetts Institute of Technology – created tiny two-faced gold and plastic particles and applied low frequency alternating current to the water containing the particles. The electric field was of voltage and frequency similar to the ones you'd get if you plugged a device into a socket in your home or office.

Velev says the micrometer-sized particles convert the electrical field into liquid motion around them and then unexpectedly propel themselves perpendicular to the direction of the powered electrodes – not in the direction of the electrical field, as would be expected. The particles always travel in the same orientation: with the plastic "face" as the front of the mini-submarine and the metallic "face" in the rear, Velev added.

The phenomenon – called "induced-charge electrophoresis," which had been predicted in a theoretical model by the MIT collaborator – had not been demonstrated previously.

The term "Janus particle" comes from the name of a Roman god with two faces. Velev says that these materials have the potential to perform a variety of applications.

"You can imagine other types of Janus particles comprising a 'smart gel' that responds to a change in its environment and then releases drugs, for example," Velev says. Fabricating these responsive materials on the microscale and nanoscale is an exciting and rapidly developing area of science, he adds.

"We are able to create tiny Janus particles of the same size and shape and are beginning to learn how to give them functionality," Velev said. "The next step is to create more complex particles that are able to perform more specialized functions in addition to propelling themselves around."

The research is funded by the National Science Foundation and a Camile and Henry Dreyfus Teacher-Scholar grant.

Dr. Orlin Velev | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>