Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Two-Faced' Particles Act Like Tiny Submarines in NC State Study

29.02.2008
For the first time, researchers at North Carolina State University have demonstrated that microscopic "two-faced" spheres whose halves are physically or chemically different – so-called Janus particles – will move like stealthy submarines when an alternating electrical field is applied to liquid surrounding the particles.
A paper describing the research, published in the Feb. 8, 2008, edition of Physical Review Letters, advances knowledge about how potential "smart" materials – think of tiny engines or sensors – can move around and respond to changes in their environment. Janus particles could be used as microscopic mixers, molecular "shuttles," self-propelling microsensors or means of targeted drug delivery.

The researchers – Dr. Orlin Velev, associate professor of chemical and biomolecular engineering at NC State and lead author of the paper; Sumit Gangwal, an NC State graduate student; Dr. Olivier Cayre, a post-doctoral researcher in Velev's lab; and Dr. Martin Bazant from Massachusetts Institute of Technology – created tiny two-faced gold and plastic particles and applied low frequency alternating current to the water containing the particles. The electric field was of voltage and frequency similar to the ones you'd get if you plugged a device into a socket in your home or office.

Velev says the micrometer-sized particles convert the electrical field into liquid motion around them and then unexpectedly propel themselves perpendicular to the direction of the powered electrodes – not in the direction of the electrical field, as would be expected. The particles always travel in the same orientation: with the plastic "face" as the front of the mini-submarine and the metallic "face" in the rear, Velev added.

The phenomenon – called "induced-charge electrophoresis," which had been predicted in a theoretical model by the MIT collaborator – had not been demonstrated previously.

The term "Janus particle" comes from the name of a Roman god with two faces. Velev says that these materials have the potential to perform a variety of applications.

"You can imagine other types of Janus particles comprising a 'smart gel' that responds to a change in its environment and then releases drugs, for example," Velev says. Fabricating these responsive materials on the microscale and nanoscale is an exciting and rapidly developing area of science, he adds.

"We are able to create tiny Janus particles of the same size and shape and are beginning to learn how to give them functionality," Velev said. "The next step is to create more complex particles that are able to perform more specialized functions in addition to propelling themselves around."

The research is funded by the National Science Foundation and a Camile and Henry Dreyfus Teacher-Scholar grant.

Dr. Orlin Velev | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>