Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steps towards warship invisibility

29.02.2008
Naval warships might look like all-powerful vessels but they are also highly vulnerable to being spotted by the enemy.

That fear of being detected has led the military to develop new stealth technologies that allow ships to be virtually invisible to the human eye, to dodge roaming radars, put heat-seeking missiles off the scent, disguise their own sound vibrations and even reduce the way they distort the Earth’s magnetic field, as senior lecture in remote sensing and sensors technology at Britannia Royal Navy College, Chris Lavers, explains in March’s Physics World.

Wars throughout the twentieth century prompted advances in stealth technologies. Some of the earliest but most significant strides towards invisibility involved covering ships with flamboyant cubist patterns – a technique known as “dazzle painting”. During the Second World War, the US military even worked out a way of using lights to make the brightness of a ship match that of the background sea.

When British physicist Robert Watson Watt was charged with designing a ‘death ray’ to destroy entire towns and cities during the Second World War, he calculated it impossible. He did conclude however that radio waves could be used to detect ships and aircrafts too far way to be seen by the naked eye.

Radar was born. For ships to dodge radar, both a ship’s geometry and a ship’s coating have to be considered. Radars are particularly receptive to right angles, which is why modern battleships are often peculiarly shaped. Special paint and foam-coating have also been used to cover ships, which convert radio-waves into heat and stop radio waves being reflected, rendering the signals useless.

The “stealthiest” ship that currently exists is Sweden’s Visby Corvette. Apart from being painted in grey dazzle camouflage and made of low-radar reflectivity materials, it also does not use propellers, which are the noisiest part of a ship. The vessel also has the lowest “magnetic signature” of any current warship.

But the next generation of warships could be truly invisible by exploiting “metamaterials” – artificially engineered structures first dreamt up by physicist John Pendry at Imperial College, London. Metamaterials are tailored to have specific electromagnetic properties not found in nature. In particular, they can bend light around an object, making it appear to an observer as though the waves have passed through empty space.

About the research, Chris Lavers writes, “If optical and radar metamaterials could be developed, they might provide a way to make a ship invisible to both human observers and radar systems, although the challenges of building a cloak big enough to hide an entire ship are huge.”

Also in this issue:

•Full steam ahead – an interview with next CERN boss Rolf-Dieter Heuer about the challenges when the Large Hadron Collider opens later this year

•Microelectronics based on the flow of heat – the new and exciting field of ‘phononics’

Charlie Wallace | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>