Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steps towards warship invisibility

29.02.2008
Naval warships might look like all-powerful vessels but they are also highly vulnerable to being spotted by the enemy.

That fear of being detected has led the military to develop new stealth technologies that allow ships to be virtually invisible to the human eye, to dodge roaming radars, put heat-seeking missiles off the scent, disguise their own sound vibrations and even reduce the way they distort the Earth’s magnetic field, as senior lecture in remote sensing and sensors technology at Britannia Royal Navy College, Chris Lavers, explains in March’s Physics World.

Wars throughout the twentieth century prompted advances in stealth technologies. Some of the earliest but most significant strides towards invisibility involved covering ships with flamboyant cubist patterns – a technique known as “dazzle painting”. During the Second World War, the US military even worked out a way of using lights to make the brightness of a ship match that of the background sea.

When British physicist Robert Watson Watt was charged with designing a ‘death ray’ to destroy entire towns and cities during the Second World War, he calculated it impossible. He did conclude however that radio waves could be used to detect ships and aircrafts too far way to be seen by the naked eye.

Radar was born. For ships to dodge radar, both a ship’s geometry and a ship’s coating have to be considered. Radars are particularly receptive to right angles, which is why modern battleships are often peculiarly shaped. Special paint and foam-coating have also been used to cover ships, which convert radio-waves into heat and stop radio waves being reflected, rendering the signals useless.

The “stealthiest” ship that currently exists is Sweden’s Visby Corvette. Apart from being painted in grey dazzle camouflage and made of low-radar reflectivity materials, it also does not use propellers, which are the noisiest part of a ship. The vessel also has the lowest “magnetic signature” of any current warship.

But the next generation of warships could be truly invisible by exploiting “metamaterials” – artificially engineered structures first dreamt up by physicist John Pendry at Imperial College, London. Metamaterials are tailored to have specific electromagnetic properties not found in nature. In particular, they can bend light around an object, making it appear to an observer as though the waves have passed through empty space.

About the research, Chris Lavers writes, “If optical and radar metamaterials could be developed, they might provide a way to make a ship invisible to both human observers and radar systems, although the challenges of building a cloak big enough to hide an entire ship are huge.”

Also in this issue:

•Full steam ahead – an interview with next CERN boss Rolf-Dieter Heuer about the challenges when the Large Hadron Collider opens later this year

•Microelectronics based on the flow of heat – the new and exciting field of ‘phononics’

Charlie Wallace | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>