Magnetic atoms of gold, silver and copper have been obtained

According to the research, in which researchers from the UPV/EHU as well as teams from Australia and Japan have taken part, the magnetism appears reduce the dimensions of the material to nanometric dimensions and surround it with previously selected organic molecules. The magnetism of these nanoparticles is a permanent one (like iron) which, even at ambient temperature, is quite significant.

This amazing behaviour has been obtained not just with gold (a phenomenon which had already been put forward as experimentally possible) but, in this research, nanoparticles of silver and copper (the atoms of which are intrinsically non-magnetic) with a size of 2 nm (0.000002 mm) have also been shown to be magnetic at ambient temperature.

The contribution of this work, part of the PhD of Ms Eider Goikolea Núñez and led by Professors Mr Jose Javier Saiz Garitaonandia and Ms Maite Insausti Peña, is not limited to obtaining these amazing magnetic nanoparticles. In fact, by means of complex techniques, using experimental systems based on particle accelerators and nuclear techniques, both in Japan and in Australia, have clearly shown for the first time that magnetism exists in atoms of gold, silver and copper, metals which, in any other condition, are intrinsically non-magnetic (a magnet does not attract them).

This discovery goes beyond the mere fact of converting non-magnetic elements to magnetic ones. These properties appear in smaller-sized particles that have never been seen in classical magnetic elements. In fact, they can be considered as the smallest magnets ever obtained. Moreover, such properties do not occur only at low temperatures but they are conserved, apparently without any degradation, at temperatures well above the ambient ones.

This work poses new questions as regards what have been the accepted up to now as the physical mechanisms associated with magnetism and opens the doors to interesting applications yet to be discovered, some of which are related to the use of magnetic nanoparticles for the diagnosis/treatment of illnesses. Likewise, this article is destined to be a point of no return for research into fundamental questions about magnetism.

Media Contact

Irati Kortabitarte alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors