Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of protein collagen seen at unprecedented level of detail

28.02.2008
The structure and behavior of one of the most common proteins in our bodies has been resolved at a level of detail never before seen, thanks to new research performed at the Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory.

Illinois Institute of Technology biologist Joseph Orgel used the high-energy X-rays produced by the APS to examine the structure of collagen, a protein that composes more than a quarter of all protein in the human body and forms the principal component of skin, teeth, ligaments, the heart, blood vessels, bones and cartilage. In these tissues, collagen molecules pack themselves into overlapping bundles called fibrils. These fibrils, which each contain billions of atoms, entwine themselves into collagen fibers that are visible to the naked eye.

Scientists have known the basic molecular structure of collagen since the 1950s, when several different international groups of scientists discovered that it had a triple-stranded helical structure. However, researches had never before had the ability to study the structure of an entire fibril in the same way that they could study an individual collagen molecule, according to Orgel.

Orgel and his team performed diffraction studies on intact collagen fibrils inside the tendons of rat tails in order to understand just how the protein functioned within unbroken tissue. "We tried to draw a highly accurate map of the molecular structure of tissues," Orgel said. "By doing so, we hope to transform a very basic understanding that we have of the molecular structure of tissue into a much more tangible form."

Since the scientists kept the tendon tissue intact, they could see how the collagen molecule binds to collagenases, a class of enzymes which when working properly help to regulate the normal growth and development of animals but when malfunctioning can lead to the metastasis of cancerous tumors or rheumatoid arthritis. The visualization of this interaction could help drug developers to create an inhibitor to prevent the pathological action of the enzyme, Orgel said.

Previous studies of the structure of collagen had looked only at crystals of small fragments of the protein, so scientists had little idea of how it looked within intact tissue. "It's impossible to get the information that we did by removing tiny chunks of the tissue," Orgel said. "We couldn't obtain this data by single-crystal crystallography. This research was made possible only because of the BioCAT beamline provided by the APS."

The research appears in the February 26 issue of the Proceedings of the National Academy of Sciences, and is available online at http://www.pnas.org/cgi/reprint/0710588105v1.

Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

By Jared Sagoff.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>